Skip to main content
Log in

The Evolution of Microstructure and Resistance in Electroplated Copper Films by Linear Integrated Laser Scanning Annealing

  • Original Article - Theory, Characterization and Modeling
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Thermal treatment is an effective way to decrease the resistivity and internal stress by inducing grain growth accompanied with redistribution of embedded impurities. With the narrowing of Cu interconnects in IC packaging, the increased resistance is becoming the main issue that hindering the electrical performance of IC. Herein, a laser annealing method by liner scanning (LALS) to anneal the Cu interconnects were reported which provide a gradient thermal field for the crystallographic/microstructure transition. The impacts of laser annealing on the sheet resistance of the electroplating Cu films were investigated in aspects of microstructure and phase field simulation. Cu films treated by LALS owned larger average grain size, better recrystallization fraction, and significantly higher average grain aspect ratio than conventional annealing, which indicated the increased driving force for grain boundaries evolution by LALS method. This study exhibited the direct evidence on the impacts of laser annealing process on the resistance of electroplated Cu films. The laser annealing process with a local temperature gradient caused a significant decline in Cu electrical resistance compared to the conventional annealing process, indicating its extraordinary potential in improving Cu wire conductivity. This work will provide a scientific basis for selecting the post-treatment process for electrodeposited Cu films to achieve ideal electrical properties and microstructure in electronics industry applications.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The raw data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Bhattacharya, D., Jha, N.K.: Ultra-high density monolithic 3-D FinFET SRAM with enhanced read stability. IEEE Trans. Circuits-I 63(8), 1176–1187 (2016). https://doi.org/10.1109/Tcsi.2016.2565641

    Article  Google Scholar 

  2. Feng, X., Yu, N., Hang, T., Zhang, Y.H., Li, M.: Experimental and theoretical study on self-annealing behavior of copper film electroplated with 2-mercaptopyridine and 2-aminobenzothiazole as additives. J. Electrochem. Soc. 163(2), D57–D62 (2016)

    Article  CAS  Google Scholar 

  3. Burkett, S.L., Jordan, M.B., Schmitt, R.P., Menk, L.A., Hollowell, A.E.: Tutorial on forming through-silicon vias. J. Vac. Sci. Technol. A (2020). https://doi.org/10.1116/6.0000026

    Article  Google Scholar 

  4. Gupta, T.: Copper Interconnect Technology. Springer, Berlin (2010)

    Google Scholar 

  5. Zhang, Z.Y., Wu, Y.W., Zhang, Y.M., Hang, T., Hu, A.M., Ling, H.Q., Li, M.: Competitive effect of leveler’s electrochemical behavior and impurity on electrical resistance of electroplated copper. J. Electrochem. Soc. 166(13), D577–D582 (2019)

    Article  CAS  Google Scholar 

  6. Horvath, B.: Influence of copper diffusion on the shape of whiskers grown on bright tin layers. Microelectron. Reliab. 53(7), 1009–1020 (2013). https://doi.org/10.1016/j.microrel.2013.03.008

    Article  CAS  Google Scholar 

  7. Lu, T.L., Wu, J.A., Chen, C.: Fabrication and characterization of <100>-oriented quasi-single crystalline Cu lines. Cryst. Growth Des. 20(3), 1485–1490 (2020). https://doi.org/10.1021/acs.cgd.9b01137

    Article  CAS  Google Scholar 

  8. Brongersma, S.H., Richard, E., Vervoort, I., Bender, H., Vandervorst, W., Lagrange, S., Beyer, G., Maex, K.: Two-step room temperature grain growth in electroplated copper. J. Appl. Phys. 86(7), 3642–3645 (1999). https://doi.org/10.1063/1.371272

    Article  CAS  Google Scholar 

  9. Wang, C., Zhang, J.Q., Yang, P.X., An, M.Z.: Electrochemical behaviors of Janus Green B in through-hole copper electroplating: an insight by experiment and density functional theory calculation using Safranine T as a comparison. Electrochim. Acta 92, 356–364 (2013). https://doi.org/10.1016/j.electacta.2013.01.064

    Article  CAS  Google Scholar 

  10. Wang, X., Yang, G., Cao, L.A., Qu, X.P.: Barrier layer dependence of self-annealing effect in directly electroplated copper films. In: 2016 IEEE International Interconnect Technology Conference/Advanced Metallization Conference (IITC/AMC), pp. 189–191 (2016)

  11. Zhang, Y.M., Hang, T., Dong, M.Y., Wu, Y.W., Ling, H.Q., Hu, A.M., Li, M.: Effects of 2-mercaptopyridine and Janus Green B as levelers on electrical resistance of electrodeposited copper thin film for interconnects. Thin Solid Films. 677, 39–44 (2019). doi:https://doi.org/10.1016/j.tsf.2019.03.012

    Article  CAS  Google Scholar 

  12. Yang, C.H., Lee, Y.W., Lee, C.Y., Lee, P.T., Ho, C.E.: Self-annealing behavior of electroplated Cu with different brightener concentrations. J. Electrochem. Soc. (2020). https://doi.org/10.1149/1945-7111/ab9189

    Article  Google Scholar 

  13. Huang, L.G., Deng, Q., Li, M., Feng, X., Gao, L.M.: A view on annealing behavior of Cu-filled through-silicon vias (TSV). ECS J. Solid State Sci. 5(7), P389–P392 (2016). https://doi.org/10.1149/2.0091607jss

    Article  CAS  Google Scholar 

  14. Ho, C.E., Chen, C.C., Yang, C.H., Lee, P.T., Hsieh, W.Z., Wu, Y.S.: TEM characterization of Cu self-annealing and direct proof of pinhole formation mechanism in a Cu film. Surf. Coat. Technol. 350, 1010–1019 (2018). https://doi.org/10.1016/j.surfcoat.2018.02.075

    Article  CAS  Google Scholar 

  15. Konkova, T.N., Mironov, S.Y., Ke, Y., Onuki, J.: Structural features of nano-scale damascene copper lines after annealing in wide temperature range. ECS Trans. 58(17), 29–36 (2014). https://doi.org/10.1149/05817.0029ecst

    Article  Google Scholar 

  16. Song, N., Zhang, W., Hsiao, P.C., Wang, X., Colwell, J., Lennon, A.: Copper microstructure evolution in light-induced plated metal grids for silicon solar cells: implications for reliable metallization. J. Electrochem. Soc. 163(14), H1136–H1143 (2016). https://doi.org/10.1149/2.0441614jes

    Article  CAS  Google Scholar 

  17. Huet, K., Aubin, J., Raynal, P.E., Curvers, B., Verstraete, A., Lespinasse, B., Mazzamuto, F., Sciuto, A., Lombardo, S.F., La Magna, A., Acosta-Alba, P., Dagault, L., Licitra, C., Hartmann, J.M., Kerdiles, S.: Pulsed laser annealing for advanced technology nodes: modeling and calibration. Appl. Surf. Sci. (2020). https://doi.org/10.1016/j.apsusc.2019.144470

    Article  Google Scholar 

  18. Yang, Y.J., Lu, X.Y., Tan, W.W., Xiao, L., Zhu, L., Xie, D.T.: Study on laser annealing of niobium films deposited on copper for RF superconducting cavities. Nucl. Instrum. Methods A (2020). https://doi.org/10.1016/j.nima.2020.163803

    Article  Google Scholar 

  19. Brisset, F., Helbert, A.L., Baudin, T.: In situ electron backscatter diffraction investigation of recrystallization in a copper wire. Microsc. Microanal. 19(4), 969–977 (2013). https://doi.org/10.1017/S1431927613000299

    Article  CAS  Google Scholar 

  20. Steinbach, I., Pezzolla, F.: A generalized field method for multiphase transformations using interface fields. Physica D 134(4), 385–393 (1999)

    Article  Google Scholar 

  21. Xue, N., Ren, Y.P., Ren, X.D., Ren, N.F., Lin, Q., Wang, Q.Q., Qin, K.: Phase filed simulation of dendritic growth of copper films irradiated by ultrashort laser pulses. Comp. Mater. Sci. 148, 60–68 (2018)

    Article  CAS  Google Scholar 

  22. Nabiollahi, N., Moelans, N., Gonzalez, M., De Messemaeker, J., Wilson, C.J., Croes, K., Beyne, E., De Wolf, I.: Microstructure simulation of grain growth in Cu through silicon vias using phase-field modeling. Microelectron. Reliab. 55(5), 765–770 (2015). https://doi.org/10.1016/j.microrel.2015.02.009

    Article  CAS  Google Scholar 

  23. Tang, S., Yu, Y.M., Wang, J., Li, J., Wang, Z., Guo, Y., Zhou, Y.: Phase-field-crystal simulation of nonequilibrium crystal growth. Phys. Rev. E Stat Nonlinear Soft Matter Phys. 89(1), 012405 (2014). https://doi.org/10.1103/PhysRevE.89.012405

    Article  CAS  Google Scholar 

  24. Chen, L.Q., Yang, W.: Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: the grain-growth kinetics. Phys. Rev. B 50(21), 15752 (1994)

    Article  CAS  Google Scholar 

  25. Zordan, R.D., Bauer, C.L.: Kinetics of grain boundary migration in dilute CuSi bicrystals. Acta Metall. 29(8), 1437–1444 (1981)

    Article  CAS  Google Scholar 

  26. Humphreys, J., Rohrer, G.S., Rollett, A.: Recrystallization and Related Annealing Phenomena. Elsevier, Amsterdam (2004)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51991370) and the National Natural Science Foundation of China (62004124); We also thank the Instrumental Analysis Center of Shanghai Jiao Tong University, for the use of the EBSD and FIB-SEM equipment.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunwen Wu or Ming Li.

Ethics declarations

Conflict of interest

The authors declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, L., Han, S., Chen, S. et al. The Evolution of Microstructure and Resistance in Electroplated Copper Films by Linear Integrated Laser Scanning Annealing. Electron. Mater. Lett. 17, 207–214 (2021). https://doi.org/10.1007/s13391-021-00269-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-021-00269-w

Keywords

Navigation