Skip to main content
Log in

Toward Understanding the Adsorption And Inhibition Mechanism of Cu-MBTA Passivation Film on Copper Surface: A Combined Experimental and DFT Investigation

  • Original Article - Theory, Characterization and Modeling
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The adsorption and passivation reactions of 5-methyl benzotriazole (MBTA) with different copper samples (as received, citric acid treated and citric acid and KIO4 treated) were studied. The experiments were characterized by contact angle measurement, potentiodynamic polarization curve, electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy. The results showed that the adsorption behavior of MBTA on different treated surfaces was different and MBTA was preferentially adsorbed on the surface of citric acid treated copper. Based on the density functional theory, quantum chemical descriptors such as the frontier molecular orbital energies EHOMO, ELUMO and the energy gap between them, molecular electrostatic potential, and Fukui function had been calculated and discussed. The adsorption mechanism of MBTA and copper surface was further revealed, which had positive significance for the corrosion inhibition of copper surface in copper interconnection CMP.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wang, Q., Tan, B.M., Gao, B.H., et al.: Study on the adsorption and inhibition mechanism of 1,2,4-triazole on copper surface in copper interconnection CMP. ECS J. Solid State Sci. Technol. 8, P313–P318 (2019). https://doi.org/10.1149/2.0121906jss

    Article  CAS  Google Scholar 

  2. Zhan, D.P., Han, L.H., Zhang, J., et al.: Electrochemical micro/nano-machining: principles and practices. Chem. Soc. Rev. 46, 1526–1544 (2017). https://doi.org/10.1039/c6cs00735j

    Article  CAS  Google Scholar 

  3. Mohammad, A.E.K., Wang, D.: Electrochemical mechanical polishing technology: recent developments and future research and industrial needs. Int. J. Adv. Manuf. 86, 1909–1924 (2016). https://doi.org/10.1007/s00170-015-8119-6

    Article  Google Scholar 

  4. Yadav, K., Bisen, J.C., Victoria, S.N., et al.: Sodium hypochlorite as an oxidizing agent in silica based ruthenium chemical mechanical planarization slurry. Microelectron. Eng. 180, 96–100 (2017). https://doi.org/10.1016/j.mee.2017.06.006

    Article  CAS  Google Scholar 

  5. Jiang, L., He, Y.Y., Li, Y.Z., et al.: Effect of ionic strength on ruthenium CMP in H2O2-based slurries. Appl. Surf. Sci. 317, 332–337 (2014). https://doi.org/10.1016/j.apsusc.2014.08.063

    Article  CAS  Google Scholar 

  6. Gao, B.H., Tan, B.M., Liu, Y.L., et al.: A study of FTIR and XPS analysis of alkaline-based cleaning agent for removing Cu-BTA residue on Cu wafer. Surface Interface Anal. 51, 566–575 (2019). https://doi.org/10.1002/sia.6623

    Article  CAS  Google Scholar 

  7. Zhou, J.K., Niu, X.H., Cui, Y.Q., et al.: Study on the film forming mechanism, corrosion inhibition effect and synergistic action of two different inhibitors on copper surface chemical mechanical polishing for GLSI. Appl. Surf. Sci. 505, 1–13 (2020). https://doi.org/10.1016/j.apsusc.2019.144507

    Article  CAS  Google Scholar 

  8. Yin, D., Yang, L., Niu, X.H., et al.: Theoretical and electrochemical analysis on inhibition effect of benzotriazole and 1,2,4-triazole on cobalt surface. Colloids Surf. A 591, 1–11 (2020). https://doi.org/10.1016/j.colsurfa.2020.124516

    Article  CAS  Google Scholar 

  9. Guo, L., Obot, I.B., Zheng, X.W., et al.: Theoretical insight into an empirical rule about organic corrosion inhibitors containing nitrogen, oxygen, and sulfur atoms. Appl. Surf. Sci. 406, 301–306 (2017). https://doi.org/10.1016/j.apsusc.2017.02.134

    Article  CAS  Google Scholar 

  10. Guo, L., El-Bakri, Y., Anouar, E.H., et al.: Multidimensional insights involving electrochemical and in silico investigation into the corrosion inhibition of newly synthesized pyrazolotriazole derivatives on carbon steel in a HCl solution. RSC Adv. 9, 34761–34771 (2019). https://doi.org/10.1039/c9ra05881h

    Article  CAS  Google Scholar 

  11. Guo, L., Tan, J.H., Kaya, S., et al.: Multidimensional insights into the corrosion inhibition of 3,3-dithiodipropionic acid on Q235 steel in H2SO4 medium: a combined experimental and in silico investigation. J. Colloid Interface Sci. 570, 116–124 (2020). https://doi.org/10.1016/j.jcis.2020.03.001

    Article  CAS  Google Scholar 

  12. Yan, C.Q., Liu, Y.L., Zhang, J., et al.: Synergistic effect of glycine and BTA on step height reduction efficiency after copper CMP in weakly alkaline slurry. ECS J. Solid State Sci. Technol. 6, P1–P6 (2017). https://doi.org/10.1149/2.0291612jss

    Article  CAS  Google Scholar 

  13. Cho, B.J., Kim, J.Y., Hamada, S., et al.: Effect of pH and chemical mechanical planarization process conditions on the copper–benzotriazole complex formation. Chem. Phys. Lett. 55, 1–5 (2016). https://doi.org/10.7567/jjap.55.06jb01

    Article  Google Scholar 

  14. Manivannan, R., Cho, B.J., Hailin, X., et al.: Characterization of non-amine-based post-copper chemical mechanical planarization cleaning solution. Microelectron. Eng. 122, 33–39 (2014). https://doi.org/10.1016/j.mee.2014.02.034

    Article  CAS  Google Scholar 

  15. Miao, Y.X., Wang, S.L., Wang, C.W., et al.: Effect of chelating agent on benzotriazole removal during post copper chemical mechanical polishing cleaning. Microelectron. Eng. 130, 18–23 (2014). https://doi.org/10.1016/j.mee.2014.08.012

    Article  CAS  Google Scholar 

  16. Ryu, H.Y., Cho, B.J., Yerriboina, N.P., et al.: Selection and optimization of corrosion inhibitors for improved Cu CMP and post-Cu CMP Cleaning. ECS J. Solid State Sci. Technol. 8, 3058–3062 (2019). https://doi.org/10.1149/2.0101905jss

    Article  CAS  Google Scholar 

  17. Cho, B.J., Shima, S., Hamada, S., et al.: Investigation of Cu-BTA complex formation during Cu chemical mechanical planarization process. Appl. Surf. Sci. 384, 505–510 (2016). https://doi.org/10.1016/j.apsusc.2016.05.106

    Article  CAS  Google Scholar 

  18. L. Jiang, Y. Y. He, X. C. Lu, et al. Investigation on the galvanic corrosion of copper during chemical mechanical polishing of ruthenium barrier layer. [C]//International Conference on Planarization/CMP Technology, Kobe, (2014) pp. 209–216. https://doi.org/10.1109/icpt.2014.7017282

  19. Cheng, J., Wang, T.Q., Lu, X.C.: Galvanic corrosion inhibitors for Cu/Ru Couple during chemical mechanical polishing of Ru. ECS J. Solid State Sci. Technol. 6, 62–67 (2017). https://doi.org/10.1149/2.0181701jss

    Article  CAS  Google Scholar 

  20. Jiang, L., He, Y.Y., Niu, X.Y., et al.: Synergetic effect of benzotriazole and non-ionic surfactant on copper chemical mechanical polishing in KIO4-based slurries. Thin Solid Films 558, 272–278 (2014). https://doi.org/10.1016/j.tsf.2014.01.086

    Article  CAS  Google Scholar 

  21. Cheng, J., Pan, J.S., Wang, T.Q., et al.: Micro-galvanic corrosion of Cu/Ru couple in potassium periodate (KIO4) solution. Corros. Sci. 137, 184–193 (2018). https://doi.org/10.1016/j.corsci.2018.03.045

    Article  CAS  Google Scholar 

  22. Turk, M.C., Shi, X., Gonyer, D.A.J., et al.: Chemical and mechanical aspects of a Co-Cu planarization scheme based on an alkaline slurry formulation. ECS J. Solid State Sci. Technol. 5, P88–P99 (2016). https://doi.org/10.1149/2.0271602jss

    Article  CAS  Google Scholar 

  23. Lu, F.Y., Song, B.D., He, P., et al.: Electrochemical impedance spectroscopy (EIS) study on the degradation of acrylic polyurethane coatings. RSC Adv. 7, 13742–13748 (2017). https://doi.org/10.1039/c6ra26341k

    Article  CAS  Google Scholar 

  24. Yuan, X.Z., Wang, H.J., Sun, J.C., et al.: AC impedance technique in PEM fuel cell diagnosis—A review. Int. J. Hydrogen Energy 32, 4365–4380 (2007). https://doi.org/10.1016/j.ijhydene.2007.05.036

    Article  CAS  Google Scholar 

  25. Tian, S.Y., Tan, B.M., Gao, B.H., et al.: Effects of novel inhibitor on galvanic corrosion of copper and cobalt and particle removal. ECS J. Solid State Sci. Technol. 8, 545–552 (2019). https://doi.org/10.1149/2.0201909jss

    Article  CAS  Google Scholar 

  26. Sherwood, P.M.: X-ray photoelectron spectroscopic studies of some iodine compounds. J. Chem. Soc. Farad. Trans. 2: Mol. Chem. Phys. 72, 1805–1820 (1976). https://doi.org/10.1039/f29767201805

    Article  CAS  Google Scholar 

  27. Guo, L., Safi, Z.S., Kaya, S., et al.: Anticorrosive effects of some thiophene derivatives against the corrosion of iron: a computational study. Front. Chem. 6, 1–12 (2018). https://doi.org/10.3389/fchem.2018.00155

    Article  CAS  Google Scholar 

  28. Dagdag, O., El Harf, A., Cherkaoui, O., et al.: Rheological, electrochemical, surface, DFT and molecular dynamics simulation studies on the anticorrosive properties of new epoxy monomer compound for steel in 1 M HCl solution. RSC Adv. 9, 4454–4462 (2019). https://doi.org/10.1039/c8ra09446b

    Article  CAS  Google Scholar 

  29. Krishna-Priya, M., Revathi, B.K., Renuka, V., et al.: Molecular structure, spectroscopic (FT-IR, FT-Raman, 13C and 1H NMR) analysis, HOMO-LUMO energies, Mulliken, MEP and thermal properties of new chalcone derivative by DFT calculation. Sci. Direct 8, 37–46 (2019). https://doi.org/10.1016/j.matpr.2019.02.078

    Article  CAS  Google Scholar 

  30. Uzun, Serap, Esen, Zeynep, Koç, Esra, et al.: Experimental and density functional theory (MEP, FMO, NLO, Fukui functions) and antibacterial activity studies on 2-amino-4-(4-nitrophenyl)-5,6-dihydrobenzo [h] quinoline-3-carbonitrile. J. Mol. Struct. 1178, 450–457 (2019). https://doi.org/10.1016/j.molstruc.2018.10.001

    Article  CAS  Google Scholar 

  31. Scrocco, E., Tomasi, J.: Electronic molecular structure, reactivity and intermolecular forces: an euristic interpretation by means of electrostatic molecular potentials. Adv. Quantum Chem. 11, 115–193 (1978). https://doi.org/10.1016/S0065-3276(08)60236-1

    Article  CAS  Google Scholar 

  32. Tan, Bochuan, Zhang, Shengtao, Liu, Hongyan, et al.: Insights into the inhibition mechanism of three 5-phenyltetrazole derivatives for copper corrosion in sulfuric acid medium via experimental and DFT methods. J. Taiwan Inst. Chem. Eng. 102, 424–437 (2019). https://doi.org/10.1016/j.jtice.2019.06.005

    Article  CAS  Google Scholar 

  33. Lesar, A., Milošev, I.: Density functional study of the corrosion inhibition properties of 1,2,4- triazole and its amino derivatives. Chem. Phys. Lett. 483, 198–203 (2009). https://doi.org/10.1016/j.cplett.2009.10.082

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Major National Science and Technology Special Projects (No. 2016ZX02301003-004-007), the Natural Science Foundation, China (No. 61704046), and the Hebei Natural Science Foundation Project (No. F2018202174). The authors thank the teachers and classmates for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baimei Tan or Fan Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Yin, D., Tan, B. et al. Toward Understanding the Adsorption And Inhibition Mechanism of Cu-MBTA Passivation Film on Copper Surface: A Combined Experimental and DFT Investigation. Electron. Mater. Lett. 17, 109–118 (2021). https://doi.org/10.1007/s13391-020-00255-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-020-00255-8

Keywords

Navigation