Skip to main content
Log in

First-Principles Study of Black Phosphorus as Anode Material for Rechargeable Potassium-Ion Batteries

  • Original Article - Theory, Characterization and Modeling
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In two-dimensional materials, black phosphorus has shown excellent performance as electrode materials for lithium- and sodium-ion batteries, due to its thermodynamic stability, layered anisotropic structure, and electrical conductivity. Recently, high capacity anodes based on black phosphorus as an active component for potassium-ion batteries (PIBs) have also been reported. However, in-depth studies are required to clarify the adsorption and diffusion of K ions on black phosphorus and the K–P reaction mechanism. In this work, the surface adsorption, bulk diffusion, and K–P binary phase formation were firstly investigated in detail using first-principle calculations. We found that compared with Li and Na, K has the lowest diffusion energy barrier in the bulk phase (0.182 eV for zigzag type and 2.013 eV for armchair type). Black phosphorus structure irreversibly collapses when the K ion concentration is up to 0.625, and no K3P phase is formed through the electrochemical profiles obtained by calculation of the binary phase alloy structures. Furthermore, the maximum capacitance of black phosphorous for PIBs is calculated to be 864.8 mAh.g−1. This work will help in understanding the mechanism and further improving the performance of K-ion batteries.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Thackeray, M.M., Wolverton, C., Isaacs, E.D.: Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 5, 7854–7863 (2012)

    Article  CAS  Google Scholar 

  2. Rahimi-Eichi, H., Ojha, U., Baronti, F., Chow, M.-Y.: Battery management system: an overview of its application in the smart grid and electric vehicles. IEEE Ind. Electron. Mag. 7, 4–16 (2013)

    Article  Google Scholar 

  3. Georgi-Maschler, T., Friedrich, B., Weyhe, R., Heegn, H., Rutz, M.: Development of a recycling process for Li-ion batteries. J. Power Sour. 207, 173–182 (2012)

    Article  CAS  Google Scholar 

  4. Sun, X., Hao, H., Zhao, F., Liu, Z.: Tracing global lithium flow: a trade-linked material flow analysis. Resour. Conserv. Recycl. 124, 50–61 (2017)

    Article  Google Scholar 

  5. Slater, M.D., Kim, D., Lee, E., Johnson, C.S.: Sodium-ion batteries. Adv. Funct. Mater. 23, 947–958 (2013)

    Article  CAS  Google Scholar 

  6. Rankin, D.W.H.: CRC handbook of chemistry and physics, 89th edition, edited by David R. Lide. Crystallogr. Rev. 15, 223–224 (2009)

    Article  Google Scholar 

  7. Cheng, D.-L., Yang, L.-C., Zhu, M.: High-performance anode materials for Na-ion batteries. Rare Met. 37, 167–180 (2018)

    Article  CAS  Google Scholar 

  8. Zhang, W., Mao, J., Li, S., Chen, Z., Guo, Z.: Phosphorus-based alloy materials for advanced potassium-ion battery anode. J. Am. Chem. Soc. 139, 3316–3319 (2017)

    Article  CAS  Google Scholar 

  9. Brown, A., Rundqvist, S.: Refinement of the crystal structure of black phosphorus. Acta Crystallogr. 19, 684–685 (1965)

    Article  CAS  Google Scholar 

  10. Cartz, L., Srinivasa, S.R., Riedner, R.J., Jorgensen, J.D., Worlton, T.G.: Effect of pressure on bonding in black phosphorus. J. Chem. Phys. 71, 1718–1721 (1979)

    Article  CAS  Google Scholar 

  11. Rodin, A.S., Carvalho, A., Neto, A.H.C.: Strain-induced gap modification in black phosphorus. Phys. Rev. Lett. 112, 176801 (2014)

    Article  CAS  Google Scholar 

  12. Qiao, J., Kong, X., Hu, Z.-X., Yang, F., Ji, W.: High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014)

    Article  CAS  Google Scholar 

  13. Sultana, I., Rahman, M.M., Ramireddy, T., Chen, Y., Glushenkov, A.M.: High capacity potassium-ion battery anodes based on black phosphorus. J. Mater. Chem. A. 5, 23506–23512 (2017)

    Article  CAS  Google Scholar 

  14. Hembram, K.P.S.S., Jung, H., Yeo, B.C., Pai, S.J., Kim, S., Lee, K.-R., Han, S.S.: Unraveling the atomistic sodiation mechanism of black phosphorus for sodium ion batteries by first-principles calculations. J. Phys. Chem. C 119, 15041–15046 (2015)

    Article  CAS  Google Scholar 

  15. Hembram, K.P.S.S., Jung, H., Yeo, B.C., Pai, S.J., Lee, H.J., Lee, K.-R., Han, S.S.: A comparative first-principles study of the lithiation, sodiation, and magnesiation of black phosphorus for Li-, Na-, and Mg-ion batteries. Phys. Chem. Chem. Phys. 18, 21391–21397 (2016)

    Article  CAS  Google Scholar 

  16. Mayo, M., Griffith, K.J., Pickard, C.J., Morris, A.J.: Ab initio study of phosphorus anodes for lithium- and sodium-ion batteries. Chem. Mater. 28, 2011–2021 (2016)

    Article  CAS  Google Scholar 

  17. Marbella, L.E., Evans, M.L., Groh, M.F., Nelson, J., Griffith, K.J., Morris, A.J., Grey, C.P.: Sodiation and desodiation via helical phosphorus intermediates in high-capacity anodes for sodium-ion batteries. J. Am. Chem. Soc. 140, 7994–8004 (2018)

    Article  CAS  Google Scholar 

  18. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169–11186 (1996)

    Article  CAS  Google Scholar 

  19. Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 59, 1758–1775 (1999)

    Article  CAS  Google Scholar 

  20. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  CAS  Google Scholar 

  21. Grimme, S.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006)

    Article  CAS  Google Scholar 

  22. Ganesh, P., Kim, J., Park, C., Yoon, M., Reboredo, F.A., Kent, P.R.C.: Binding and diffusion of lithium in graphite: quantum monte carlo benchmarks and validation of van der Waals density functional methods. J. Chem. Theory Comput. 10, 5318–5323 (2014)

    Article  CAS  Google Scholar 

  23. Kou, L., Frauenheim, T., Chen, C.: Phosphorene as a superior gas sensor: selective adsorption and distinct IV response. J. Phys. Chem. Lett. 5, 2675–2681 (2014)

    Article  CAS  Google Scholar 

  24. Zhu, Z., Tománek, D.: Semiconducting layered blue phosphorus: a computational study. Phys. Rev. Lett. 112, 176802 (2014)

    Article  Google Scholar 

  25. Henkelman, G., Uberuaga, B.P., Jónsson, H.: A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000)

    Article  CAS  Google Scholar 

  26. Sibari, A., Marjaoui, A., Lakhal, M., Kerrami, Z., Kara, A., Benaissa, M., Ennaoui, A., Hamedoun, M., Benyoussef, A., Mounkachi, O.: Phosphorene as a promising anode material for (Li/Na/Mg)-ion batteries: a first-principle study. Sol. Energy Mater. Sol. Cells 180, 253–257 (2018)

    Article  CAS  Google Scholar 

  27. Qiao, L., Qu, C.Q., Zhang, H.Z., Yu, S.S., Hu, X.Y., Zhang, X.M., Bi, D.M., Jiang, Q., Zheng, W.T.: Effects of alkali metal adsorption on the structural and field emission properties of graphene. Diam. Relat. Mater. 19, 1377–1381 (2010)

    Article  CAS  Google Scholar 

  28. Dai, J., Zeng, X.C.: Bilayer phosphorene: effect of stacking order on bandgap and its potential applications in thin-film solar cells. J. Phys. Chem. Lett. 5, 1289–1293 (2014)

    Article  CAS  Google Scholar 

  29. Fan, X., Zheng, W.T., Kuo, J.-L., Singh, D.J.: Adsorption of single Li and the formation of small Li clusters on graphene for the anode of lithium-ion batteries. ACS Appl. Mater. Interfaces 5, 7793–7797 (2013)

    Article  CAS  Google Scholar 

  30. Karmakar, S., Chowdhury, C., Datta, A.: Two-dimensional group IV monochalcogenides: anode materials for Li-ion batteries. J. Phys. Chem. C 120, 14522–14530 (2016)

    Article  CAS  Google Scholar 

  31. Lee, E., Persson, K.A.: Li absorption and intercalation in single layer graphene and few layer graphene by first principles. Nano Lett. 12, 4624–4628 (2012)

    Article  CAS  Google Scholar 

  32. Sangster, J.M.: K-P (Potassium-Phosphorus) System. J. Phase Equilibria Diffus. 31, 68–72 (2010)

    Article  CAS  Google Scholar 

  33. Jain, A., Ong, S.P., Hautier, G., Chen, W., Richards, W.D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., Persson, K.A.: Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013)

    Article  Google Scholar 

  34. Lee, H.W., Jung, H., Yeo, B.C., Kim, D., Han, S.S.: Atomistic sodiation mechanism of a phosphorene/graphene heterostructure for sodium-ion batteries determined by first-principles calculations. J. Phys. Chem. C 122, 20653–20660 (2018)

    Article  CAS  Google Scholar 

  35. Nobuhara, K., Nakayama, H., Nose, M., Nakanishi, S., Iba, H.: First-principles study of alkali metal-graphite intercalation compounds. J. Power Sour. 243, 585–587 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21473054 and 91834301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunxiang Lu.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2154 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Lu, Y., Zhao, C. et al. First-Principles Study of Black Phosphorus as Anode Material for Rechargeable Potassium-Ion Batteries. Electron. Mater. Lett. 16, 89–98 (2020). https://doi.org/10.1007/s13391-019-00178-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-019-00178-z

Keywords

Navigation