Skip to main content
Log in

Synthesis of Ag@rGO/g-C3N4 Layered Structures and Their Application to Toxic Gas Sensors: Effect of Ag Nanoparticles

  • Original Article - Nanomaterials
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In this work, graphitic carbon nitride (g-C3N4) was synthesized by simple pyrolysis of melamine, and it was hybridized with reduced graphene oxide (rGO) and silver nanoparticles (AgNPs) using a stepwise solution method. AgNPs were randomly distributed on the surface of rGO/g-C3N4 layered hybrid structure, forming Ag@rGO/g-C3N4 composite. It was disclosed that the Ag@rGO/g-C3N4 composite responded to both oxidizing and reducing gases at room temperature, and its response was greatly enhanced from those of pristine rGO and rGO/g-C3N4. The room temperature responses of the composite were estimated at − 95% and 8% for 50 ppm of NO2 and NH3, respectively. The roles of structural components were discussed, and a gas-sensing mechanism was proposed based on the respective roles. In particular, AgNPs turned out to play an important role in the gas-sensing activity.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Terrill, J.B., Montgomery, R.R., Reinhardt, C.F.: Toxic gases from fires. Science 200, 1343–1347 (1978)

    CAS  Google Scholar 

  2. Babrauskas, V., Peacock, R.D.: Heat release rate: the single most important variable in fire hazard. Fire Saf. J. 18, 255–272 (1992)

    CAS  Google Scholar 

  3. Bakun, A., Field, D.B., Redondo-Rodriguez, A.N.A., Weeks, S.J.: Greenhouse gas, upwelling-favorable winds, and the future of coastal ocean upwelling ecosystems. Glob. Change Biol. 16, 1213–1228 (2010)

    Google Scholar 

  4. Alfrey, A.C., Hegg, A., Craswell, P.: Metabolism and toxicity of aluminum in renal failure. Am. J. Clin. Nutr. 33, 1509–1516 (1980)

    CAS  Google Scholar 

  5. Yang, C.-J., Jackson, R.B.: China’s synthetic natural gas revolution. Nat. Clim. Change 3, 852 (2013)

    CAS  Google Scholar 

  6. Doonan, C.J., Tranchemontagne, D.J., Glover, T.G., Hunt, J.R., Yaghi, O.M.: Exceptional ammonia uptake by a covalent organic framework. Nat. Chem. 2, 235 (2010)

    CAS  Google Scholar 

  7. Rieth, A.J., Dincă, M.: Controlled gas uptake in metal–organic frameworks with record ammonia sorption. J. Am. Chem. Soc. 140, 3461–3466 (2018)

    CAS  Google Scholar 

  8. Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R., Polasky, S.: Agricultural sustainability and intensive production practices. Nature 418, 671 (2002)

    CAS  Google Scholar 

  9. Mustafa, M.G., Tierney, D.F.: Biochemical and metabolic changes in the lung with oxygen, ozone, and nitrogen dioxide toxicity. Am. Rev. Respir. Dis. 118, 1061–1090 (1978)

    CAS  Google Scholar 

  10. Noji, E.K.: The public health consequences of disasters. Prehosp. Disaster Med. 15, 21–31 (2000)

    Google Scholar 

  11. Pielke Jr., R., Wigley, T., Green, C.: Dangerous assumptions. Nature 452, 531 (2008)

    CAS  Google Scholar 

  12. Yang, S., Sun, J., Ramirez-Cuesta, A.J., Callear, S.K., David, W.I.F., Anderson, D.P., Newby, R., Blake, A.J., Parker, J.E., Tang, C.C.: Selectivity and direct visualization of carbon dioxide and sulfur dioxide in a decorated porous host. Nat. Chem. 4, 887 (2012)

    CAS  Google Scholar 

  13. Arshak, K., Moore, E., Lyons, G.M., Harris, J., Clifford, S.: A review of gas sensors employed in electronic nose applications. Sens. Rev. 24, 181–198 (2004)

    Google Scholar 

  14. Kumar, R., Al-Dossary, O., Kumar, G., Umar, A.: Zinc oxide nanostructures for NO2 gas—sensor applications: a review. Nano Micro Lett. 7, 97–120 (2015)

    Google Scholar 

  15. Zhu, L., Zeng, W.: Room-temperature gas sensing of ZnO-based gas sensor: a review. Sens. Actuators A Phys. 267, 242–261 (2017)

    CAS  Google Scholar 

  16. Chatterjee, S.G., Chatterjee, S., Ray, A.K., Chakraborty, A.K.: Graphene–metal oxide nanohybrids for toxic gas sensor: a review. Sens. Actuators B Chem. 221, 1170–1181 (2015)

    Google Scholar 

  17. Sun, Y.-F., Liu, S.-B., Meng, F.-L., Liu, J.-Y., Jin, Z., Kong, L.-T., Liu, J.-H.: Metal oxide nanostructures and their gas sensing properties: a review. Sensors 12, 2610–2631 (2012)

    CAS  Google Scholar 

  18. Ta, Q.T.H., Namgung, G., Noh, J.-S.: Facile synthesis of porous metal-doped ZnO/g-C3N4 composites for highly efficient photocatalysts. J. Photochem. Photobiol. A Chem. 368, 110–119 (2019)

    CAS  Google Scholar 

  19. Wu, G., Hu, Y., Liu, Y., Zhao, J., Chen, X., Whoehling, V., Plesse, C., Nguyen, G.T.M., Vidal, F., Chen, W.: Graphitic carbon nitride nanosheet electrode-based high-performance ionic actuator. Nat. Commun. 6, 7258 (2015)

    CAS  Google Scholar 

  20. Hu, Y., Li, L., Zhang, L., Lv, Y.: Dielectric barrier discharge plasma-assisted fabrication of g-C3N4–Mn3O4 composite for high-performance cataluminescence H2S gas sensor. Sens. Actuators B Chem. 239, 1177–1184 (2017)

    CAS  Google Scholar 

  21. Liao, G., Chen, S., Quan, X., Yu, H., Zhao, H.: Graphene oxide modified g-C3N4 hybrid with enhanced photocatalytic capability under visible light irradiation. J. Mater. Chem. 22, 2721–2726 (2012)

    CAS  Google Scholar 

  22. Zeng, B., Zhang, L., Wan, X., Song, H., Lv, Y.: Fabrication of α-Fe2O3/g-C3N4 composites for cataluminescence sensing of H2S. Sens. Actuators B Chem. 211, 370–376 (2015)

    CAS  Google Scholar 

  23. Rao, C.N.R., Gopalakrishnan, K., Maitra, U.: Comparative study of potential applications of graphene, MoS2, and other two-dimensional materials in energy devices, sensors, and related areas. ACS Appl. Mater. Interfaces 7, 7809–7832 (2015)

    CAS  Google Scholar 

  24. Liu, X., Ma, T., Pinna, N., Zhang, J.: Two-dimensional nanostructured materials for gas sensing. Adv. Funct. Mater. 27, 1702168 (2017)

    Google Scholar 

  25. Ong, W.J., Tan, L.L., Ng, Y.H., Yong, S.T., Chai, S.P.: Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 116, 7159–7329 (2016)

    CAS  Google Scholar 

  26. Thinh, P.X., Basavaraja, C., Kim, K.: Il: Fabrication and characterization of honeycomb-patterned film from poly (ɛ-caprolactone)/poly ((R)-3-hydroxybutyric acid)/reduced graphene oxide composite. Polym. J. 45, 1064 (2013)

    CAS  Google Scholar 

  27. Shao, Y., Wang, J., Wu, H., Liu, J., Aksay, I.A., Lin, Y.: Graphene based electrochemical sensors and biosensors: a review. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 22, 1027–1036 (2010)

    CAS  Google Scholar 

  28. Li, J., Liu, C.Y.: Ag/graphene heterostructures: synthesis, characterization and optical properties. Eur. J. Inorg. Chem. 2010, 1244–1248 (2010)

    Google Scholar 

  29. Cui, S., Pu, H., Lu, G., Wen, Z., Mattson, E.C., Hirschmugl, C., Gajdardziska-Josifovska, M., Weinert, M., Chen, J.: Fast and selective room-temperature ammonia sensors using silver nanocrystal-functionalized carbon nanotubes. ACS Appl. Mater. Interfaces 4, 4898–4904 (2012)

    CAS  Google Scholar 

  30. Hummers, W.S., Offeman, R.E.: Preparation of graphite oxide. J. Am. Chem. Soc. 80, 1339 (1958)

    CAS  Google Scholar 

  31. He, H., Gao, C.: Graphene nanosheets decorated with Pd, Pt, Au, and Ag nanoparticles: synthesis, characterization, and catalysis applications. Sci. China Chem. 54, 397–404 (2011)

    CAS  Google Scholar 

  32. Gautam, M., Jayatissa, A.H.: Ammonia gas sensing behavior of graphene surface decorated with gold nanoparticles. Solid State Electron. 78, 159–165 (2012)

    CAS  Google Scholar 

  33. Zhang, Y., Pan, Q., Chai, G., Liang, M., Dong, G., Zhang, Q., Qiu, J.: Synthesis and luminescence mechanism of multicolor-emitting g-C3N4 nanopowders by low temperature thermal condensation of melamine. Sci. Rep. 3, 1943 (2013)

    Google Scholar 

  34. Yan, S.C., Li, Z.S., Zou, Z.G.: Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25, 10397–10401 (2009)

    CAS  Google Scholar 

  35. Dikin, D.A., Stankovich, S., Zimney, E.J., Piner, R.D., Dommett, G.H.B., Evmenenko, G., Nguyen, S.T., Ruoff, R.S.: Preparation and characterization of graphene oxide paper. Nature 448, 457 (2007)

    CAS  Google Scholar 

  36. Stobinski, L., Lesiak, B., Malolepszy, A., Mazurkiewicz, M., Mierzwa, B., Zemek, J., Jiricek, P., Bieloshapka, I.: Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J. Electron. Spectrosc. Relat. Phenom. 195, 145–154 (2014)

    CAS  Google Scholar 

  37. Ta, Q.T.H., Cho, E., Sreedhar, A., Noh, J.-S.: Mixed-dimensional, three-level hierarchical nanostructures of silver and zinc oxide for fast photocatalytic degradation of multiple dyes. J. Catal. 371, 1–9 (2019)

    CAS  Google Scholar 

  38. Ta, Q.T.H., Park, S., Noh, J.-S.: Ag nanowire/ZnO nanobush hybrid structures for improved photocatalytic activity. J. Colloid Interface Sci. 505, 437–444 (2017)

    Google Scholar 

  39. Ta, Q.T.H., Namgung, G., Noh, J.-S.: Morphological evolution of solution-grown cobalt-doped ZnO nanostructures and their properties. Chem. Phys. Lett. 700, 1–6 (2018)

    CAS  Google Scholar 

  40. Yan, H., Yang, H.: TiO2–g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation. J. Alloys Compd. 509, L26–L29 (2011)

    CAS  Google Scholar 

  41. Ye, L., Liu, J., Jiang, Z., Peng, T., Zan, L.: Facets coupling of BiOBr–g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity. Appl. Catal. B Environ. 142, 1–7 (2013)

    Google Scholar 

  42. Singh, V.K., Shukla, A., Patra, M.K., Saini, L., Jani, R.K., Vadera, S.R., Kumar, N.: Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite. Carbon N. Y. 50, 2202–2208 (2012)

    CAS  Google Scholar 

  43. Wen, J., Xie, J., Chen, X., Li, X.: A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 391, 72–123 (2017)

    CAS  Google Scholar 

  44. Cao, J., Qin, C., Wang, Y., Zhang, H., Sun, G., Zhang, Z.: Solid-state method synthesis of SnO2-decorated g-C3N4 nanocomposites with enhanced gas-sensing property to ethanol. Materials (Basel) 10, 604 (2017)

    Google Scholar 

  45. Llobet, E.: Gas sensors using carbon nanomaterials: a review. Sens. Actuators B Chem. 179, 32–45 (2013)

    CAS  Google Scholar 

  46. Wu, F., Li, X., Liu, W., Zhang, S.: Highly enhanced photocatalytic degradation of methylene blue over the indirect all-solid-state Z-scheme g-C3N4–RGO–TiO2 nanoheterojunctions. Appl. Surf. Sci. 405, 60–70 (2017)

    CAS  Google Scholar 

  47. Yavari, F., Koratkar, N.: Graphene-based chemical sensors. J. Phys. Chem. Lett. 3, 1746–1753 (2012)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Gachon University research fund of 2018 (GCU-2018-0311). This work was partly supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT) (No. 2019R1A2C1008746).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Seo Noh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ta, Q.T.H., Namgung, G. & Noh, JS. Synthesis of Ag@rGO/g-C3N4 Layered Structures and Their Application to Toxic Gas Sensors: Effect of Ag Nanoparticles. Electron. Mater. Lett. 15, 750–759 (2019). https://doi.org/10.1007/s13391-019-00175-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-019-00175-2

Keywords

Navigation