Skip to main content
Log in

Effect of Thermoelectric Leg Thickness in a Planar Thin Film TEC Device on Different Substrates

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Recently, mobile application processors (APs) have suffered from thermal issues such as local hot spot generation. Several approaches for chip cooling, such as dynamic thermal management, and heat pipe cooling, have been attempted so far, but, these solutions cannot completely eliminate increasing thermal issues. Therefore, in this study, we fabricated a planar type of thin film thermoelectric cooler (TEC) as an active cooling device for a mobile AP chip. We studied the effect of thickness on a planar thin film TEC device related to Joule heating and demonstrated the Peltier cooling effect on polyimide (PI) and Si substrates. The optimal thicknesses of n-type Bi2Te3 and p-type Sb2Te3 films were evaluated by ANSYS® simulation, and are 5.05 μm and 5.45 μm, respectively. It was shown that heat moves to the TE leg on the PI substrate, while the Si substrate serves as a heat sink according to the IR thermography analysis. The optimal thickness of the TE showed a temperature difference between the cold junction and hot junction up to 1.3 °C.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Coskun, A.K., Rosing, T.S., Gross, K.C.: Utilizing predictors for efficient thermal management in multiprocessor SoCs. IEEE TCAD 28(10), 1503–1516 (2009)

    Google Scholar 

  2. Brooks, D., Martonosi, M.: Dynamic thermal management for high-performance microprocessors. In: IEEE HPCA, pp. 171–182 (2002)

  3. Samsung, Bringing the Galaxy Note9’s water carbon cooling system to life. https://news.samsung.com/global/bringing-the-water-carbon-cooling-system-to-life (2018). Accessed 29 Aug 2018

  4. Hsiao, H.-H., Chiou, H.-W., Lee, Y.-M.: Multi-angle bended heat pipe design using X-architecture routing with dynamic thermal weight on mobile devices. ASP-DAC 2019, 70–75 (2019)

    Google Scholar 

  5. Su, Y., Lu, J., Villaroman, D., Li, D., Huang, B.: Free-standing planar thermoelectric microrefrigerators based on nano-grained SiGe thin films for on-chip refrigeration. Nano Energy 48, 202–210 (2018)

    Article  CAS  Google Scholar 

  6. Min, G., Rowe, D.M., Volklein, F.: Integrated thin film thermoelectric cooler. Electron. Lett. 34(2), 222–223 (1998)

    Article  Google Scholar 

  7. Shakouri, A.: Nanoscal thermal transport and microrefrigerators on a chip. Proc. IEEE 94(8), 1613–1638 (2006)

    Article  CAS  Google Scholar 

  8. Venkatasubramanian, R., Siivola, E., Colpitts, T., O’Quinn, B.: Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597–602 (2001)

    Article  CAS  Google Scholar 

  9. Liu, C.K., Dai, M.J., Yu, C.K., Kuo, S.L.: High efficiency silicon-based high power LED package integrated with micro-thermoelectric device. IMPACT 2007, 9867755 (2007)

    Google Scholar 

  10. Cohen, A.B., Wang, P.: Thermal management of on-chip hot spot. J. Heat Transf. 134(5), 051017 (2012)

    Article  Google Scholar 

  11. Sauciuc, I., Rasher, R., Chang, J., Erturk, H., Chrysler, G., Chiu, C., Mahajan, R.: Thermal performance and key challenges for future CPU cooling technologies. ASME IPACK 2005, 73242 (2005)

    Google Scholar 

  12. Chowdhury, I., Prasher, R., Lofgreen, K., Chrysler, G., Narasimhan, S., Mahajan, R., Koester, D., Alley, R., Venkatasubramanian, R.: On-chip cooling by superlattice-based thin-film thermoelectrics. Nat. Nanotechnol. 4(4), 235–238 (2009)

    Article  CAS  Google Scholar 

  13. He, R., Schierning, G., Nielsch, K.: Thermoelectric devices: a review of devices, architectures, and contact optimization. Adv. Mater. Technol. 3, 1700256-17 (2017)

    Google Scholar 

  14. Zheng, X.F., Liu, C.X., Yan, Y.Y., Wang, Q.: A review of thermoelectrics research—recent developments and potentials for sustainable and renewable energy applications. Renew. Sustain Energy Rev. 32, 486–503 (2014)

    Article  CAS  Google Scholar 

  15. Su, Y., Lu, J., Huang, B.: Free-standing planar thin-film thermoelectric microrefrigerators and the effects of thermal and electrical contact resistances. Int. J. Heat Mass Transf. 117, 436–446 (2018)

    Article  CAS  Google Scholar 

  16. He, Yu., Léonard, F., Medlin, D.L., Baldasaro, N., Temple, D.S., Barletta, P., Spataru, C.D.: High-efficiency thin-film superlattice thermoelectric cooler modules enabled by low resistivity contacts. Adv. Electron. Mater. 4, 1700381–1700388 (2018)

    Article  Google Scholar 

  17. Shen, H., Lee, S., Kang, J.-G., Eom, T.-Y., Lee, H., Kang, C., Han, S.: Thickness effects on the microstructure and electrical/thermoelectric properties of co-evaporated Bi-Te thin films. J. Alloys Compd. 767, 522–527 (2018)

    Article  CAS  Google Scholar 

  18. Shen, H., Lee, S., Kang, J.-G., Eom, T.-Y., Lee, H., Kang, C., Han, S.: Thickness dependence of the electrical and thermoelectric properties of co-evaporated Sb2Te3 films. Appl. Surf. Sci. 429, 115–120 (2018)

    Article  CAS  Google Scholar 

  19. Jeong, M.-W., Na, S., Shin, H., Park, H.-B., Lee, H., Joo, Y.-C.: Thermomechanical in situ monitoring of Bi2Te3 thin film and its relationship with microstructure and thermoelectric performances. Electron. Mater. Lett. 14, 426–431 (2018)

    Article  CAS  Google Scholar 

  20. Vieira, E.M.F., Figueira, J., Pires, L., Grilo, J., Silva, M.F., Pereira, A.M., Goncalves, L.M.: Enhanced thermoelectric properties of Sb2Te3 and Bi2Te3 films for flexible thermal sensors. J. Alloys Compd. 774, 1102–1116 (2019)

    Article  CAS  Google Scholar 

  21. Liao, M.-H., Huang, K.-C., Tsai, F.-A., Liu, C.-Y., Lien, C., Lee, M.-H.: Thickness dependence of electrical conductivity and thermo-electric power of Bi2.0Te2.7Se0.3/Bi0.4Te3.0Sb1.6 thermo-electric devices. AIP Adv. 8, 015020 (2018)

    Article  Google Scholar 

  22. Owoyele, O., Ferguson, S., O’Connor, B.T.: Performance analysis of a thermoelectric cooler with a corrugated architecture. Appl. Energy 147, 184–191 (2015)

    Article  Google Scholar 

  23. Goncalves, L.M., Couto, C., Alpuim, P., Rolo, A.G., Völklein, F., Correia, J.H.: Optimization of thermoelectric properties on Bi2Te3 thin films deposited by thermal co-evaporation. Thin Solid Films 518, 2816–2821 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the MOTIE (Ministry of Trade, Industry and Energy (10049130) and KSRC (Korea Semiconductor Research Consortium) support program for the development of the future semiconductor device and by the Creative Materials Discovery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2017M3D1A1040688).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Chang Joo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, C., Park, S., Yoon, J. et al. Effect of Thermoelectric Leg Thickness in a Planar Thin Film TEC Device on Different Substrates. Electron. Mater. Lett. 15, 686–692 (2019). https://doi.org/10.1007/s13391-019-00167-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-019-00167-2

Keywords

Navigation