Skip to main content
Log in

Effects of Chlorine Contents on Perovskite Solar Cell Structure Formed on CdS Electron Transport Layer Probed by Rutherford Backscattering

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

CdS synthesized by the chemical bath method at 70 °C, has been used as an electron transport layer in the planar structure of the perovskite solar cells. A two-step spin process produced a mixed halide perovskite of CH3NH3PbI3−xClx and a mixture of PbCl2 and PbI2 was deposited on CdS, followed by a sub-sequential reaction with MAI (CH3NH3I). The added PbCl2 to PbI2 in the first spin-step affected the structure, orientation, and shape of lead halides, which varied depending on the content of Cl. A small amount of Cl enhanced the surface morphology and the preferred orientation of PbI2, which led to large and uniform grains of perovskite thin films. In contrast, the high content of Cl produces a new phase PbICl in addition to PbI2, which leads to the small and highly uniform grains of perovskites. An improved surface coverage of perovskite films with the large and uniform grains maximized the performance of perovskite solar cells at 0.1 molar ratio of PbCl2 to PbI2. The depth profiling of elements in both lead halide films and mixed halide perovskite films were measured by Rutherford backscattering spectroscopy, revealing the distribution of chlorine along with the thickness, and providing the basis for the mechanism for enhanced preferred orientation of lead halide and the microstructure of perovskites.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D.: Solar cell efficiency tables (version 48). Prog. Photovolt. Res. Appl. 24, 905 (2016)

    Article  Google Scholar 

  2. National Renewable Energy Laboratory (NREL): Photovoltaic research. http://www.nrel.gov/ncpv/images/efficiency_chart.jpg. Accessed 24 Jan 2018

  3. Abdelmageed, G., Jewell, L., Hellier, K., Seymour, L., Luo, B., Bridges, F., Zhang, J.Z., Carter, S.: Mechanisms for light induced degradation in MAPbI3 perovskite thin films and solar cells. Appl. Phys. Lett. 109, 233905 (2016)

    Article  Google Scholar 

  4. Liu, D., Kelly, T.L.: Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics 8, 133 (2014)

    Article  Google Scholar 

  5. Dymshits, A., Lagher, L., Etgar, L.: Parameters influencing the growth of ZnO nanowires as efficient low temperature flexible perovskite-based solar cells. Materials 9, 60 (2016)

    Article  Google Scholar 

  6. Baena, J.-P.C., Steier, L., Tress, W., Saliba, M., Neutzner, S., Matsui, T., Giordano, F., Jacobsson, T.J., Kandada, A.R.S., Zakeeruddin, S.M., Petrozza, A., Abate, A., Nazeeruddin, M.K., Grätzelb, M., Hagfeldt, A.: Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci. 8, 2928 (2015)

    Article  Google Scholar 

  7. Wang, L., Fu, W., Gu, Z., Fan, C., Yang, X., Li, H., Chen, H.: Low temperature solution processed planar heterojunction perovskite solar cells with CdSe nanocrystal as electron transport/extraction layer. J. Mater. Chem. C 2, 9087 (2014)

    Article  Google Scholar 

  8. Chiang, C.-H., Tseng, Z.-L., Wu, C.-G.: Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-Step spin-coating process. J. Mater. Chem. A 2, 15897 (2014)

    Article  Google Scholar 

  9. Shin, G.S., Choi, W.-G., Na, S., Gökdemir, F.P., Moon, T.: Lead acetate based hybrid perovskite through hot casting for planar heterojunction solar cells. Electron. Mater. Lett. 14, 155 (2018)

    Article  Google Scholar 

  10. Shin, G.S., Choi, W.-G., Na, S., Ryu, S.O., Moon, T.: Rapid crystallization in ambient air for planar heterojunction perovskite solar cells. Electron. Mater. Lett. 13, 72 (2017)

    Article  Google Scholar 

  11. Peng, H., Sun, W., Li, Y., Yan, W., Yu, P., Zhou, H., Bian, Z., Huang, C.: High-performance cadmium sulphide-based planar perovskite solar cell and the cadmium sulphide/perovskite interfaces. J. Photonics Energy 6, 022002 (2016)

    Article  Google Scholar 

  12. Wang, J., Liu, L., Liu, S., Yang, L., Zhang, B., Feng, S., Yang, J., Meng, X., Fu, W., Yang, H.: Influence of a compact Cds layer on the photovoltaic performance of perovskite-based solar cells. Sustain. Energy Fuels 1, 504 (2017)

    Article  Google Scholar 

  13. Hwang, I., Yong, K.: Novel CdS hole-blocking layer for photostable perovskite solar cells. ACS Appl. Mater. Interfaces. 8, 4226 (2016)

    Article  Google Scholar 

  14. Liu, J., Gao, C., Luo, L., Ye, Q., He, X., Ouyang, L., Guo, X., Zhuang, D., Liao, C., Mei, J., Lau, W.: Low-temperature, solution processed metal sulfide as an electron transport layer for efficient planar perovskite solar cells. J. Mater. Chem. A 3, 11750 (2015)

    Article  Google Scholar 

  15. Gu, Z., Chen, F., Zhang, X., Liu, Y., Fan, C., Wu, G., Li, H., Chen, H.: Novel planar heterostructure perovskite solar cells with CdS nanorods array as electron transport layer. Sol. Energy Mater. Sol. Cells 140, 396 (2015)

    Article  Google Scholar 

  16. Juarez-Perez, E.J., Wuβler, M., Fabregat-Santiago, F., Lakus-Wollny, K., Mankel, E., Mayer, T., Jaegermann, W., Mora-Sero, I.: Role of the selective contacts in the performance of lead halide perovskite solar cells. J. Phys. Chem. Lett. 5, 680 (2014)

    Article  Google Scholar 

  17. Wang, J.T.-W., Ball, J.M., Barea, E.M., Abate, A., Alexander-Webber, J.A., Huang, J., Saliba, M., Mora-Sero, I., Bisquert, J., Snaith, H.J., Nicholas, R.J.: Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett. 14, 724 (2014)

    Article  Google Scholar 

  18. Han, G.S., Song, Y.H., Jin, Y.U., Lee, J.-W., Park, N.-G., Kang, B.K., Lee, J.-K., Cho, I.S., Yoon, D.H., Jung, H.S.: Reduced graphene oxide/mesoporous TiO2 nanocomposite based perovskite solar cells. ACS Appl. Mater. Interfaces 7, 23521 (2015)

    Article  Google Scholar 

  19. Salas-Villasenor, A.L., Mejia, I., Sotelo-Lerma, M., Gnade, B.E., Quevedo-Lopez, M.A.: Performance and stability of solution-based cadmium sulfide thin film transistors: role of CdS cluster size and film composition. Appl. Phys. Lett. 101, 262103 (2012)

    Article  Google Scholar 

  20. Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., Snaith, H.J.: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643 (2012)

    Article  Google Scholar 

  21. Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., Grätzel, M.: Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316 (2013)

    Article  Google Scholar 

  22. Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., Moon, S.-J., Humphry-Baker, R., Yum, J.-H., Moser, J.E., Grätzel, M., Park, N.-G.: Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012)

    Article  Google Scholar 

  23. Shi, J., Luo, Y., Wei, H., Luo, J., Dong, J., Lv, S., Xiao, J., Xu, Y., Zhu, L., Xu, X., Wu, H., Li, D., Meng, Q.: Modified two-step deposition method for high-efficiency TiO2/CH3NH3PbI3 heterojunction solar cells. ACS Appl. Mater. Interfaces. 6, 9711 (2014)

    Article  Google Scholar 

  24. Liu, M., Johnston, M.B., Snaith, H.J.: Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395 (2013)

    Article  Google Scholar 

  25. Nie, W., Tsai, H., Asadpour, R., Blancon, J.-C., Neukirch, A.J., Gupta, G., Crochet, J.J., Chhowalla, M., Tretiak, S., Alam, M.A., Wang, H.-L., Mohite, A.D.: High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522 (2015)

    Article  Google Scholar 

  26. Stranks, S.D., Nayak, P.K., Zhang, W., Stergiopoulos, T., Snaith, H.J.: Formation of thin films of organic–inorganic perovskites for high-efficiency solar cells. Angew. Chem. Int. Ed. 54, 2 (2015)

    Article  Google Scholar 

  27. Gao, P., Gratzel, M., Nazeeruddin, M.K.: Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci. 7, 2448 (2014)

    Article  Google Scholar 

  28. Longo, G., Gil-Escrig, L., Degen, M.J., Sessolo, M., Bolink, H.J.: Perovskite solar cells prepared by flash evaporation. Chem. Commun. 51, 7376 (2015)

    Article  Google Scholar 

  29. Wu, Y., Islam, A., Yang, X., Qin, C., Liu, J., Zhang, K., Penga, W., Han, L.: Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy Environ. Sci. 7, 2934 (2014)

    Article  Google Scholar 

  30. Zhang, T., Yang, M., Zhao, Y., Zhu, K.: Controllable sequential deposition of planar CH3NH3PbI3 perovskite films via adjustable volume expansion. Nano Lett. 15, 3959 (2015)

    Article  Google Scholar 

  31. Jeon, N.J., Noh, J.H., Kim, Y.C., Yang, W.S., Ryu, S., Seok, S.I.: Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897 (2014)

    Article  Google Scholar 

  32. Ahn, N., Son, D.-Y., Jang, I.-H., Kang, S.M., Choi, M., Park, N.-G.: Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead(II) iodide. J. Am. Chem. Soc. 137, 8696 (2015)

    Article  Google Scholar 

  33. Li, W., Fan, J., Li, J., Mai, Y., Wang, L.: Controllable grain morphology of perovskite absorber film by molecular self-assembly toward efficient solar cell exceeding 17%. J. Am. Chem. Soc. 137, 10399 (2015)

    Article  Google Scholar 

  34. Jo, Y., Oh, K.S., Kim, M., Kim, K.-H., Lee, H., Lee, C.-W., Kim, D.S.: High performance of planar perovskite solar cells produced from PbI2 (DMSO) and PbI2 (NMP) complexes by intramolecular exchange. Adv. Mater. Interfaces 3, 1500768 (2016)

    Article  Google Scholar 

  35. Zhang, H., Mao, J., He, H., Zhang, D., Zhu, H.L., Xie, F., Wong, K.S., Grätzel, M., Choy, W.C.H.: A smooth CH3NH3PbI3 film via a new approach for forming the PbI2 nanostructure together with strategically high CH3NH3I concentration for high efficient planar-heterojunction solar cells. Adv. Energy Mater. 5, 1501354 (2015)

    Article  Google Scholar 

  36. Zhang, H., Cheng, J., Li, D., Lin, F., Mao, J., Liang, C., Jen, A.K.-Y., Grätzel, M., Choy, W.C.H.: Toward all room-temperature, solution-processed, high-performance planar perovskite solar cells: a new scheme of pyridine-promoted perovskite formation. Adv. Mater. 29, 1604695 (2017)

    Article  Google Scholar 

  37. Hwang, K., Jung, Y.-S., Heo, Y.-J., Scholes, F.H., Watkins, S.E., Subbiah, J., Jones, D.J., Kim, D.-Y., Vak, D.: Toward large scale roll-to-roll production of fully printed perovskite solar cells. Adv. Mater. 27, 1241 (2015)

    Article  Google Scholar 

  38. Wu, N., Shi, C., Ying, C., Zhang, J., Wang, M.: Pbicl: a new precursor solution for efficient planar perovskite solar cell by vapor-assisted solution process. Appl. Surf. Sci. 357, 2372 (2015)

    Article  Google Scholar 

  39. Zhao, Y., Zhu, K.: CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3: structure, charge–carrier dynamics, and photovoltaic properties of perovskite solar cells. J. Phys. Chem. C 118, 9412 (2014)

    Article  Google Scholar 

  40. Mosconi, E., Ronca, E., Angelis, F.D.: First-principles investigation of the TiO2/organohalide perovskites interface: the role of interfacial chlorine. J. Phys. Chem. Lett. 5, 2619 (2014)

    Article  Google Scholar 

  41. Salas-Villasenor, A.L., Mejia, I., Sotelo-Lerma, M., Guo, Z.B., Alshareef, H.N., Quevedo-Lopez, M.A.: Improved electrical stability of CdS thin film transistors through hydrogen-based thermal treatments. Semicond. Sci. Technol. 29, 085001 (2014)

    Article  Google Scholar 

  42. Wang, M., Shi, C., Zhang, J., Wu, N., Ying, C.: Influence of PbCl2 content in PbI2 solution of DMF on the absorption, crystal phase, morphology of lead halide thin films and photovoltaic performance in planar perovskite solar cells. J. Solid State Chem. 231, 20 (2015)

    Article  Google Scholar 

  43. Brixner, P.A.L.H., Chen, H.-Y., Foris, C.M.: X-ray study of the PbCl2−xIx and PbBr2−xIx systems. J. Solid State Chem. 40, 336 (1981)

    Article  Google Scholar 

  44. Baltog, I., Baibarac, M., Lefrant, S.: Quantum well effect in bulk PbI2 crystals revealed by the anisotropy of photoluminescence and raman spectra. J. Phys.: Condens. Matter 21, 025507 (2009)

    Google Scholar 

  45. Fan, L., Ding, Y., Luo, J., Shi, B., Yao, X., Wei, C., Zhang, D., Wang, G., Sheng, Y., Chen, Y., Hagfeldt, A., Zhao, Y., Zhang, X.: Elucidating the role of chlorine in perovskite solar cells. J. Mater. Chem. A 5, 7423 (2017)

    Article  Google Scholar 

  46. Behrisch, R., Grigull, S., Kreissig, U., Grotzschel, R.: Influence of surface roughness on measuring depth profiles and the total amount of implanted ions by RBS and ERDA. Nucl. Instrum. Methods Phys. Res. B 136–138, 628 (1998)

    Article  Google Scholar 

  47. Simon, A., Paszti, F., Uzonyi, I., Manuaba, A., Kiss, A.Z., Rajta, I.: Observation of surface topography using an RBS microbeam. Nucl. Instrum. Methods Phys. Res. B 136–138, 344 (1998)

    Article  Google Scholar 

  48. Zolnai, Z., Nagy, N., Deák, A., Battistig, G.: Three-dimensional view of the shape, size, and atomic composition of ordered nanostructures by Rutherford backscattering spectrometry. Phys. Rev. B 83, 233302 (2011)

    Article  Google Scholar 

  49. Krupinski, M., Perzanowski, M., Zarzycki, Y., Marszalek, M.: Influence of surface topography on RBS measurements: case studies of (Cu/Fe/Pd) multilayers and FePdCu alloys nanopatterned by self-assembly. Adv. Nat. Sci. Nanosci. Nanotechnol. 8, 015004 (2017)

    Article  Google Scholar 

  50. Xu, F., Zhang, T., Li, G., Zhao, Y.: Synergetic effect of chloride doping and CH3NH3PbCl3 on CH3NH3PbI3−xClx perovskite-based solar cells. Chemsuschem 10, 2365 (2017)

    Article  Google Scholar 

  51. Colella, S., Mosconi, E., Fedeli, P., Listorti, A., Gazza, F., Orlandi, F., Ferro, P., Besagni, T., Rizzo, A., Calestani, G., Gigli, G., De Angelis, F., Mosca, R.: Mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties. Chem. Mater. 25, 4613 (2013)

    Article  Google Scholar 

  52. Maculan, G., Sheikh, A.D., Abdelhady, A.L., Saidaminov, M.I., Haque, M.A., Murali, B., Alarousu, E., Mohammed, O.F., Wu, T., Bakr, O.M.: CH3NH3PbCl3 single crystals: inverse temperature crystallization and visible-blind UV–photodetector. J. Phys. Chem. Lett. 6, 3781 (2015)

    Article  Google Scholar 

  53. Baena, J.-P.C., Anaya, M., Lozano, G., Tress, W., Domanski, K., Saliba, M., Matsui, T., Jacobsson, T.J., Calvo, M.E., Abate, A., Grätzel, M., Míguez, H., Hagfeldt, A.: Unbroken perovskite: interplay of morphology, electro-optical properties, and ionic movement. Adv. Mater. 28, 5031 (2016)

    Article  Google Scholar 

  54. Hadadian, M., Baena, J.-P.C., Goharshadi, E.K., Ummedisingu, A., Seo, J.-Y., Luo, J., Gholipour, S., Saliba, M., Abate, A., Grätzel, M., Hagfeldt, A.: Enhancing efficiency of perovskite solar cells via N-doped graphene: crystal modification and surface passivation. Adv. Mater. 28, 8681 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2013K1A4A3055679). This study was also supported by a National Research Foundation of Korea (NRF) Grant (No. 2015R1A5A7037615) funded by the Korean Government (MSIP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaegab Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikh, M.A.K., Abdur, R., Singh, S. et al. Effects of Chlorine Contents on Perovskite Solar Cell Structure Formed on CdS Electron Transport Layer Probed by Rutherford Backscattering. Electron. Mater. Lett. 14, 700–711 (2018). https://doi.org/10.1007/s13391-018-0084-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-018-0084-4

Keywords

Navigation