Skip to main content
Log in

Mobility-Spectrum Analysis of an Anisotropic Material System with a Single-Valley Indirect-Band-Gap Semiconductor Quantum-Well

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Full maximum-entropy mobility-spectrum analysis (FMEMSA) is the best algorithm among mobility spectrum analyses by which we can obtain a set of partial-conductivities associated with mobility values (mobility spectrum) by analyzing magnetic-field-dependent conductivity-tensors. However, it is restricted to a direct band-gap semiconductor and should be modified for materials with other band structures. We developed the modified version of FMEMSA which is appropriate for a material with a single anisotropic valley, or an indirect-band-gap semiconductor quantum-well with a single non-degenerate conduction-band valley e.g., (110)-oriented AlAs quantum wells with a single anisotropic valley. To demonstrate the reliability of the modified version, we applied it to several sets of synthetic measurement datasets. The results demonstrated that, unlike existing FMEMSA, the modified version could produce accurate mobility spectra of materials with a single anisotropic valley.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Beck, W.A., Anderson, J.R.: Determination of electrical transport properties using a novel magnetic field-dependent Hall technique. J. Appl. Phys. 62, 541–554 (1987)

    Article  Google Scholar 

  2. Rothman, J., Meilhan, J., Perrais, G., Belle, J.P., Gravrand, O.: Maximum entropy mobility spectrum analysis of HgCdTe heterostructures. J. Electron. Mater. 35, 1174–1184 (2006)

    Article  Google Scholar 

  3. Gui, Y., Li, B., Zheng, G., Chang, Y., Wang, S., He, L., Chu, J.: Evaluation of densities and mobilities for heavy and light holes in p-type HgCdTe molecular beam epitaxy films from magnetic-field-dependent Hall data. J. Appl. Phys. 84, 4327–4331 (1998)

    Article  Google Scholar 

  4. Antoszewski, J., Faraone, L., Vurgaftman, I., Meyer, J.R., Hoffman, C.A.: Application of quantitative mobility-spectrum analysis to multilayer HgCdTe structures. J. Electron. Mater. 33, 673–683 (2004)

    Article  Google Scholar 

  5. Chrastina, D., Hague, J.P., Leadley, D.R.: Application of Bryan’s algorithm to the mobility spectrum analysis of semiconductor devices. J. Appl. Phys. 94, 6583–6590 (2003)

    Article  Google Scholar 

  6. Kiatgamolchai, S., Myronov, M., Mironov, O.A., Kantser, V.G., Parker, E.H.C., Whall, T.E.: Mobility spectrum computational analysis using a maximum entropy approach. Phys. Rev. E 66, 036705 (2002)

    Article  Google Scholar 

  7. Vurgaftman, I., Meyer, J.R., Hoffman, C.A., Cho, S., Ketterson, J.B., Faraone, L., Antoszewski, J., Lindemuth, J.R.: Quantitative mobility spectrum analysis (QMSA) for hall characterization of electrons and holes in anisotropic bands. J. Electron. Mater. 28, 548–552 (1999)

    Article  Google Scholar 

  8. Dasgupta, S., Birner, S., Knaak, C., Bichler, M., Fontcuberta i Morral, A., Abstreiter, G., Grayson, M.: Single-valley high-mobility (110) AlAs quantum wells with anisotropic mass. Appl. Phys. Lett. 93, 132102 (2008)

    Article  Google Scholar 

  9. Sun, Y., Thompson, S.E., Nishida, T.: Physics of strain effects in semiconductors and metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 101, 104503 (2007)

    Article  Google Scholar 

  10. Dhar, S., Ungersböck, E., Kosina, H., Grasser, T., Selberherr, S.: Electron mobility model for <110> stressed silicon including strain-dependent mass. IEEE Trans. Nanotechnol. 6, 97–100 (2007)

    Article  Google Scholar 

  11. Vakili, K., Shkolnikov, Y.P., Tutuc, E., Bishop, N.C., De Poortere, E.P., Shayegan, M.: Spin-dependent resistivity and quantum Hall ferromagnetism in two-dimensional electrons confined to AlAs quantum wells. Phys. E 34, 89–92 (2006)

    Article  Google Scholar 

  12. Padmanabhan, M., Gokmen, T., Bishop, N.C., Shayegan, M.: Effective mass suppression in dilute, spin-polarized two-dimensional electron systems. Phys. Rev. Lett. 101, 026402 (2008)

    Article  Google Scholar 

  13. Meyer, J.R., Hoffman, C.A., Bartoli, F.J., Arnold, D.A., Sivananthan, S., Fauri, J.P.: Methods for magnetotransport characterization of IR detector materials. Semicond. Sci. Technol. 8, 805–823 (1993)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1A6A1A03012877, 2017R1D1A1B03032158).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il-Ho Ahn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joung, H., Ahn, IH., Yang, W. et al. Mobility-Spectrum Analysis of an Anisotropic Material System with a Single-Valley Indirect-Band-Gap Semiconductor Quantum-Well. Electron. Mater. Lett. 14, 774–783 (2018). https://doi.org/10.1007/s13391-018-0081-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-018-0081-7

Keywords

Navigation