Skip to main content
Log in

Enhanced Photovoltaic Performance of Perovskite Solar Cells by Copper Chloride (CuCl2) as an Additive in Single Solvent Perovskite Precursor

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In this letter, we have introduced copper chloride (CuCl2) as an additive in the CH3NH3PbI3 precursor solution to improve the surface morphology and crystallinity of CH3NH3PbI3 films in a single solvent system. Our optimized perovskite solar cells (PSCs) with 2.5 mol% CuCl2 additive showed best power conversion efficiency (PCE) of 15.22%. The PCE of the PSCs fabricated by CuCl2 (2.5 mol%) additive engineering was 56% higher than the PSC fabricated with pristine CH3NH3PbI3.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., Moon, S.-J., Humphry-Baker, R., Yum, J.-H., Moser, J.E.: Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012)

    Article  Google Scholar 

  2. Stranks, S.D., Eperon, G.E., Grancini, G., Menelaou, C., Alcocer, M.J., Leijtens, T., Herz, L.M., Petrozza, A., Snaith, H.J.: Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013)

    Article  Google Scholar 

  3. Wehrenfennig, C., Eperon, G.E., Johnston, M.B., Snaith, H.J., Herz, L.M.: High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014)

    Article  Google Scholar 

  4. Noh, J.H., Im, S.H., Heo, J.H., Mandal, T.N., Seok, S.I.: Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013)

    Article  Google Scholar 

  5. Heo, J.H., Im, S.H., Noh, J.H., Mandal, T.N., Lim, C.-S., Chang, J.A., Lee, Y.H., Kim, H.-J., Sarkar, A., Nazeeruddin, M.K.: Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 7, 486 (2013)

    Article  Google Scholar 

  6. Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)

    Article  Google Scholar 

  7. Saliba, M., Matsui, T., Domanski, K., Seo, J.-Y., Ummadisingu, A., Zakeeruddin, S.M., Correa-Baena, J.-P., Tress, W.R., Abate, A., Hagfeldt, A.: Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206–209 (2016)

    Article  Google Scholar 

  8. Wu, Y., Islam, A., Yang, X., Qin, C., Liu, J., Zhang, K., Peng, W., Han, L.: Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy Environ. Sci. 7, 2934–2938 (2014)

    Article  Google Scholar 

  9. Xie, F., Chen, C.-C., Wu, Y., Li, X., Cai, M., Liu, X., Yang, X., Han, L.: Vertical recrystallization for highly efficient and stable formamidinium-based inverted-structure perovskite solar cells. Energy Environ. Sci. 10, 1942–1949 (2017)

    Article  Google Scholar 

  10. Watthage, S.C., Song, Z., Shrestha, N., Phillips, A.B., Liyanage, G.K., Roland, P.J., Ellingson, R.J., Heben, M.J.: Enhanced grain size, photoluminescence, and photoconversion efficiency with cadmium addition during the two-step growth of CH3NH3PbI3. ACS Appl. Mater. Interfaces. 9, 2334–2341 (2017)

    Article  Google Scholar 

  11. Zheng, H., Liu, G., Zhu, L., Ye, J., Zhang, X., Alsaedi, A., Hayat, T., Pan, X., Dai, S.: Enhanced performance and stability of perovskite solar cells using NH4I interfacial modifier. ACS Appl. Mater. Interfaces. 9, 41006–41013 (2017)

    Article  Google Scholar 

  12. Hou, X., Hu, Y., Liu, H., Mei, A., Li, X., Duan, M., Zhang, G., Rong, Y., Han, H.: Effect of guanidinium on mesoscopic perovskite solar cells. J. Mater. Chem. A 5, 73–78 (2017)

    Article  Google Scholar 

  13. Hsieh, C.-M., Yu, Y.-L., Chen, C.-P., Chuang, S.-C.: Effects of the additives n-propylammonium or n-butylammonium iodide on the performance of perovskite solar cells. RSC Adv. 7, 55986–55992 (2017)

    Article  Google Scholar 

  14. Zhao, Y., Zhu, K.: CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3: structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells. J. Phys. Chem. C 118, 9412–9418 (2014)

    Article  Google Scholar 

  15. Liang, P.W., Liao, C.Y., Chueh, C.C., Zuo, F., Williams, S.T., Xin, X.K., Lin, J., Jen, A.K.Y.: Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv. Mater. 26, 3748–3754 (2014)

    Article  Google Scholar 

  16. Yang, Y., Song, J., Zhao, Y., Zhu, L., Gu, X., Gu, Y., Che, M., Qiang, Y.: Ammonium-iodide-salt additives induced photovoltaic performance enhancement in one-step solution process for perovskite solar cells. J Alloys Compd. 684, 84–90 (2016)

    Article  Google Scholar 

  17. Sun, C., Guo, Y., Fang, B., Yang, J., Qin, B., Duan, H., Chen, Y., Li, H., Liu, H.: Enhanced photovoltaic performance of perovskite solar cells using polymer P (VDF-TrFE) as a processed additive. J. Phys. Chem. C 120, 12980–12988 (2016)

    Article  Google Scholar 

  18. Seo, J.Y., Matsui, T., Luo, J., Correa-Baena, J.P., Giordano, F., Saliba, M., Schenk, K., Ummadisingu, A., Domanski, K., Hadadian, M.: Ionic liquid control crystal growth to enhance planar perovskite solar cells efficiency. Adv. Energy Mater. 6, 1600767 (2016)

    Article  Google Scholar 

  19. Ahn, N., Son, D.-Y., Jang, I.-H., Kang, S.M., Choi, M., Park, N.-G.: Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead (II) iodide. J. Am. Chem. Soc. 137, 8696–8699 (2015)

    Article  Google Scholar 

  20. Frolova, L.A., Anokhin, D.V., Gerasimov, K.L., Dremova, N.N., Troshin, P.A.: Exploring the effects of the Pb2+ substitution in MAPbI3 on the photovoltaic performance of the hybrid Perovskite solar cells. J. Phys. Chem. Lett. 7, 4353–4357 (2016)

    Article  Google Scholar 

  21. Williams, S.T., Zuo, F., Chueh, C.-C., Liao, C.-Y., Liang, P.-W., Jen, A.K.-Y.: Role of chloride in the morphological evolution of organo-lead halide perovskite thin films. ACS Nano 8, 10640–10654 (2014)

    Article  Google Scholar 

  22. Shi, Y., Wang, X., Zhang, H., Li, B., Lu, H., Ma, T., Hao, C.: Effects of 4-tert-butylpyridine on perovskite formation and performance of solution-processed perovskite solar cells. J. Mater. Chem. A 3, 22191–22198 (2015)

    Article  Google Scholar 

  23. Song, Z., Watthage, S.C., Phillips, A.B., Tompkins, B.L., Ellingson, R.J., Heben, M.J.: Impact of processing temperature and composition on the formation of methylammonium lead iodide perovskites. Chem. Mater. 27, 4612–4619 (2015)

    Article  Google Scholar 

  24. Dharani, S., Mulmudi, H.K., Yantara, N., Trang, P.T.T., Park, N.G., Graetzel, M., Mhaisalkar, S., Mathews, N., Boix, P.P.: High efficiency electrospun TiO2 nanofiber based hybrid organic-inorganic perovskite solar cell. Nanoscale 6, 1675–1679 (2014)

    Article  Google Scholar 

  25. Gharibzadeh, S., Nejand, B.A., Moshaii, A., Mohammadian, N., Alizadeh, A.H., Mohammadpour, R., Ahmadi, V., Alizadeh, A.: Two-step physical deposition of a compact CuI Hole-Transport layer and the formation of an interfacial species in perovskite solar cells. Chemsuschem 9, 1929–1937 (2016)

    Article  Google Scholar 

  26. Rajamanickam, N., Kumari, S., Vendra, V.K., Lavery, B.W., Spurgeon, J., Druffel, T., Sunkara, M.K.: Stable and durable CH3NH3PbI3 perovskite solar cells at ambient conditions. Nanotechnology 27, 235404 (2016)

    Article  Google Scholar 

  27. Zhou, Z., Li, X., Cai, M., Xie, F., Wu, Y., Lan, Z., Yang, X., Qiang, Y., Islam, A., Han, L.: Stable inverted planar perovskite solar cells with low-temperature-processed hole-transport bilayer. Adv. Energy Mater. 7, 1700763 (2017)

    Article  Google Scholar 

  28. Patterson, A.: The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978 (1939)

    Article  Google Scholar 

  29. Xiao, Z., Dong, Q., Bi, C., Shao, Y., Yuan, Y., Huang, J.: Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 26, 6503–6509 (2014)

    Article  Google Scholar 

  30. Chang, C.-Y., Lee, K.-T., Huang, W.-K., Siao, H.-Y., Chang, Y.-C.: High-performance, air-stable, low-temperature processed semitransparent perovskite solar cells enabled by atomic layer deposition. Chem. Mater. 27, 5122–5130 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

Ashraful Islam acknowledges the support from JSPS KAKENHI grant No. 18H02079.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraful Islam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 571 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emrul Kayesh, M., Matsuishi, K., Chowdhury, T.H. et al. Enhanced Photovoltaic Performance of Perovskite Solar Cells by Copper Chloride (CuCl2) as an Additive in Single Solvent Perovskite Precursor. Electron. Mater. Lett. 14, 712–717 (2018). https://doi.org/10.1007/s13391-018-0075-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-018-0075-5

Keywords

Navigation