Skip to main content
Log in

Field-emission property of self-purification SiC/SiOx coaxial nanowires synthesized via direct microwave irradiation using iron-containing catalyst

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

SiC/SiOx coaxial nanowires were rapidly synthesized via direct microwave irradiation in low vacuum atmosphere. During the preparation process, only graphite, silicon, silicon dioxide powders were used as raw materials and iron-containing substance was employed as catalyst. Comprehensive characterizations were employed to investigate the microstructure of the products. The results showed that a great quantity of coaxial nanowires with uniform sizes and high aspect ratio had been successfully achieved. The coaxial nanowires consist of a silicon oxide (SiOx) shell and a β-phase silicon carbide (β-SiC) core that exhibited in special tube brush like. In additional, nearly all the products were achieved in the statement of pure SiC/SiOx coaxial nanowires without the existence of metallic catalyst, indicating that the self-removal of iron (Fe) catalyst should be occurred during the synthesis process. Photoluminescence (PL) spectral analysis result indicated that such novel SiC/SiOx coaxial nanowires exhibited significant blue-shift. Besides, the measurement results of field-emission (FE) demonstrated that the SiC/SiOx coaxial nanowires had ultralow turn-on field and threshold field with values of 0.2 and 2.1 V/μm, respectively. The hetero-junction structure formed between SiOx shell and SiC core, lots of emission sites, as well as clear tips of the nanowires were applied to explain the excellent FE properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. B. Casady and R. W. Johnson, Solid-State Electron. 39, 1409 (1996).

    Article  Google Scholar 

  2. E. W. Wong, P. E. Sheehan, and C. M. Lieber, Science 277, 1971 (1997).

    Article  Google Scholar 

  3. J. Fan, H. Li, J. Jiang, L. K. So, Y. W. Lam, and P. K. Chu, Small 4, 1058 (2008).

    Article  Google Scholar 

  4. P. Hu, S. Dong, D. Zhang, C. Fang, and X. Zhang, Ceram. Int. 42, 1581 (2016).

    Article  Google Scholar 

  5. V. Presser and K. G. Nickel, Crit. Rev. Solid State 33, 1 (2008).

    Article  Google Scholar 

  6. K. Zekentes and K. Rogdakis, J. Phys. D: Appl. Phys. 44, 133001 (2011).

    Article  Google Scholar 

  7. R. Wu, K. Zhou, C. Y. Yue, J. Wei, and Y. Pan, Pro. Mater. Sci. 72, 1 (2015).

    Article  Google Scholar 

  8. X. Fang, Y. Bando, U. K. Gautam, C. Ye, and D. Golberg, J. Mater. Chem. 18, 509 (2008).

    Article  Google Scholar 

  9. R. Wu, K. Zhou, J. Wei, Y. Huang, F. Su, J. Chen, and L. Wang, J. Phys. Chem. C 116, 12940 (2012).

    Article  Google Scholar 

  10. Y. Ryu, Y. Tak, and K. Yong, Nanotechnology 16, S370 (2005).

    Article  Google Scholar 

  11. H. Cui, L. Gong, Y. Sun, G. Z. Yang, C. L. Liang, J. Chen, and C. X. Wang, CrystEngComm 13, 1416 (2011).

    Article  Google Scholar 

  12. M. Zhang, Z. Li, J. Zhao, L. Gong, A. Meng, X. Liu, X. Fan, and X. Qi, J. Phys. Mater. C 3, 658 (2015).

    Google Scholar 

  13. X. Zhang, Y. Chen, Z. Xie, and W. Yang, J. Phys. Chem. C 114, 8251 (2014).

    Article  Google Scholar 

  14. Y. Yang, H. Yang, G. Wei, L. Wang, M. Shang, Z. Yang, and B. Tang, J. Phys. Chem. C 2, 4515 (2014).

    Google Scholar 

  15. S. Chen, P. Ying, L. Wang, G. Wei, J. Zheng, F. Gao, S. Su, and W. Yang, J. Phys. Chem. C 1, 4779 (2013).

    Google Scholar 

  16. M. Nüchter, B. Ondruschka, W. Bonrath, and A. Gum, Green Chem. 6, 128 (2004).

    Article  Google Scholar 

  17. L. Carassiti, A. Jones, P. Harrison, P. S. Dobson, S. Kingman, I. MacLaren, and D. H. Gregory, Energy Environ. Sci. 4, 1503 (2011).

    Article  Google Scholar 

  18. J. Wang, S. Huang, S. Liu, and Q. Zhou, Mater. Charact. 114, 54 (2016).

    Article  Google Scholar 

  19. S. Liu and J. Wang, Phys. E 81, 268 (2016).

    Article  Google Scholar 

  20. Y. Yu, Q. Zhou, and J. Wang, Chem. Commun. 52, 3396 (2016).

    Article  Google Scholar 

  21. Y. Yu and J. Wang, Ceram. Int. 42, 4063 (2016).

    Article  Google Scholar 

  22. J. Wang, S. Liu, T. Ding, S. Huang, and C. Qian, Mater. Chem. Phys. 135, 1005 (2012).

    Article  Google Scholar 

  23. L. Wang, C. Li, Y. Yang, S. Chen, F. Gao, G. Wei, and W. Yang, ACS Appl. Mater. Inter. 7, 526 (2014).

    Article  Google Scholar 

  24. G. Shen, Y. Bando, and D. Golberg, Cryst. Growth Des. 7, 35 (2007).

    Article  Google Scholar 

  25. W. A. De Heer and A. Chatelain, Science 270, 1179 (1995).

    Article  Google Scholar 

  26. W. Zhu, G. P. Kochanski, and S. Jin, Science 282, 1471 (1998).

    Article  Google Scholar 

  27. Y. Sun, H. Cui, G. Z. Yang, H. Huang, D. Jiang, and C. X. Wang, CrystEngComm 12, 1134 (2010).

    Article  Google Scholar 

  28. X. Li, G. Zhang, R. Tronstad, and O. Ostrovski, Ceram. Int. 42, 5668 (2016).

    Article  Google Scholar 

  29. R. V. KG Thirumalai, B. Krishnan, A. V. Davydov, J. N. Merrett, and Y. Koshka, Cryst. Growth Des. 12, 2221 (2012).

    Article  Google Scholar 

  30. Y. Zhang, X. Han, K. Zheng, Z. Zhang, X. Zhang, J. Fu, Y. Ji, Y. Hao, X. Guo, and Z. Wang, Funct. Mater. 17, 3435 (2007).

    Article  Google Scholar 

  31. R. Wu, Y. Pan, G. Yang, M. Gao, L. Wu, J. Chen, R. Zhai, and J. Lin, J. Phys. Chem. C 111, 6233 (2007).

    Article  Google Scholar 

  32. G. Sivalingam, N. Agarwal, and G. Madras, J. Appl. Polym. Sci. 91, 1450 (2004).

    Article  Google Scholar 

  33. M. A. Janney, H. D. Kimrey, W. R. Allen, and J. O. Kiggans, J. Mater. Sci. 32, 1347 (1997).

    Article  Google Scholar 

  34. J. A. Menéndez, E. J. Juárez-Pérez, E. Ruisánchez, J. M. Bermúdez, and A. Arenillas, Carbon 49, 346 (2011).

    Article  Google Scholar 

  35. H. K. Seong, H. J. Choi, S. K. Lee, J. I. Lee, and D. J. Choi, Eur. J. Inorg. Chem. 2008, 3883 (2008).

    Google Scholar 

  36. X. L. Wu, J. Y. Fan, T. Qiu, X. Yang, G. G. Siu, and P. K. Chu, Phys. Rev. Lett. 94, 026102 (2005).

    Article  Google Scholar 

  37. X. J. Wang, J. F. Tian, L. H. Bao, C. Hui, T. Z. Yang, C. M. Shen, H. J. Gao, F. Liu, and N. S. Xu, J. Appl. Phys. 102, 014309 (2007).

    Article  Google Scholar 

  38. R. Dalvand, S. Mahmud, and J. Rouhi, Mater. Lett. 160, 444 (2015).

    Article  Google Scholar 

  39. L. B. Luo, X. B. Yang, F. X. Liang, H. Xu, Y. Zhao, X. Xie, W. F. Zhang, and S. T. Lee, J. Phys. Chem. C 115, 18453 (2011).

    Article  Google Scholar 

  40. R. H. Fowler and L. W. Nordheim, Proc. of the Royal Society of London A: Mater. Phys. Eng. Sci. 119, 173 (1928).

    Article  Google Scholar 

  41. K. Ghosh, M. Kumar, H. Wang, T. Maruyama, and Y. Ando, Langmuir 26, 5527 (2010).

    Article  Google Scholar 

  42. J. Rouhi, C. H. R. Ooi, S. Mahmud, and M. Mahmood, Electron. Mater. Lett. 11, 957 (2015).

    Article  Google Scholar 

  43. S. Y. Han and J. L. Lee, J. Appl. Phys. 106, 023709 (2009).

    Article  Google Scholar 

  44. F. Fabbri, F. Rossi, G. Attolini, G. Salviati, S. Iannotta, L. Aversa, R. Verucchi, M. Nardi, N. Fukata, B. Dierre, and T. Sekiguchi, Nanotechnology 21, 345702 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jigang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., Yu, Y., Huang, S. et al. Field-emission property of self-purification SiC/SiOx coaxial nanowires synthesized via direct microwave irradiation using iron-containing catalyst. Electron. Mater. Lett. 13, 351–358 (2017). https://doi.org/10.1007/s13391-017-7010-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-017-7010-z

Keywords

Navigation