Skip to main content
Log in

Achieving high carrier mobility exceeding 70 cm2/Vs in amorphous zinc tin oxide thin-film transistors

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

This paper proposes a new defect engineering concept for low-cost In- and Ga-free zinc tin oxide (ZTO) thin-film transistors (TFTs). This concept is comprised of capping ZTO films with tantalum (Ta) and a subsequent modest thermal annealing treatment at 200 °C. The Ta-capped ZTO TFTs exhibited a remarkably high carrier mobility of 70.8 cm2/Vs, low subthreshold gate swing of 0.18 V/decade, threshold voltage of −1.3 V, and excellent ION/OFF ratio of 2 × 108. The improvement (> two-fold) in the carrier mobility compared to the uncapped ZTO TFT can be attributed to the effective reduction of the number of adverse tailing trap states, such as hydroxyl groups or oxygen interstitial defects, which stems from the scavenging effect of the Ta capping layer on the ZTO channel layer. Furthermore, the Ta-capped ZTO TFTs showed excellent positive and negative gate bias stress stabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432, 7016 (2004).

    Article  Google Scholar 

  2. J. K. Jeong, Semicond. Sci. Technol. 2, 3 (2011).

    Google Scholar 

  3. Welcome to IGZO. [Online]. Available: http://www.sharpusa.com/ForHome/HomeEntertainment/LCDTV/igzo.aspx, accessed Oct. 30, 2016.

  4. OLED. [Online]. Available: http://en.wikipedia.org/wiki/ OLED, accessed Oct. 30, 2016.

  5. J.-H. Jeon, T.-K. Gong, Y.-M. Kong, H. M. Lee, and D. Kim, Electron. Mater. Lett. 11, 3 (2015).

    Article  Google Scholar 

  6. X. Ding, F. Huang, S. Li, J. Zhang, X. Jiang, and Z. Zhang, Electron. Mater. Lett. 13, 1 (2017).

    Article  Google Scholar 

  7. J. Y. Kwon and J. K. Jeong, Semicond. Sci. Technol. 30, 024002 (2015).

    Article  Google Scholar 

  8. J. H. Song, K. S. Kim, Y. G. Mo, R. Choi, and J. K. Jeong, IEEE Electron. Dev. Lett. 35, 853 (2014).

    Article  Google Scholar 

  9. R. L. Hoffman, Solid-State Electron. 5, 784 (2006).

    Article  Google Scholar 

  10. M. G. McDowell, R. J. Sanderson, and I. G. Hill, Appl. Phys. Lett. 92, 013502 (2008).

    Article  Google Scholar 

  11. Y. S. Rim, D. L. Kim, W. H. Jeong, and H. J. Kim, Appl. Phys. Lett. 93, 233502 (2010).

    Article  Google Scholar 

  12. J. Heo, S. B. Kim, and R. G. Gordon, Appl. Phys. Lett. 101, 113507 (2012).

    Article  Google Scholar 

  13. Y. J. Kim, S. Oh, B. S. Yang, S. J. Han, H. W. Lee, H. J. Kim, J. K. Jeong, C. S. Hwang, and H. J. Kim, ACS Appl. Mater. Interface 6, 14026 (2014).

    Article  Google Scholar 

  14. Y. J. Kim, B. S. Yang, S. Oh, S. J. Han, H. W. Lee, J. Heo, J. K. Jeong, and H. J. Kim, ACS Appl. Mater. Interface 5, 3255 (2013).

    Article  Google Scholar 

  15. X. Zhang, J. P. Ndabakuranye, D. W. Kim, J. S. Choi, and J. Park, Electron. Mater. Lett. 11, 6 (2015).

    Google Scholar 

  16. S.-H. Lee and W.-S. Choi, Electron. Mater. Lett. 10, 4 (2014).

    Google Scholar 

  17. D. W. Greve, Field Effect Devices and Applications: Devices for Portable, Low-Power, and Imaging Systems. p. 379, Prentice Hall: Upper Saddle River, USA (1998).

    Google Scholar 

  18. E. Fortunato, A. Pimentel, L. Pereira, A. Goncalves, G. Lavareda, H. Aguas, I. Ferreira, C. N. Carvalho, and R. Martins, J. Non-Crystalline Solids 338-340, 806 (2004).

    Article  Google Scholar 

  19. L. Wang, M.-H. Yoon, G. Lu, Y. Yang, A. Facchetti, and T. J. Marks, Nat. Mater. 5, 893 (2006).

    Article  Google Scholar 

  20. X. Liu, C. Wang, B. Cai, X. Xiao, S. Guo, Z. Fan, J. Li, X. Duan, and L. Liao, Nano Lett. 12, 3596 (2012).

    Article  Google Scholar 

  21. R. Schumacher, P. Thomas, K. Weber, and W. Fuhs, Solid State Commun. 62, 15 (1987).

    Article  Google Scholar 

  22. S. Josef, J. Non-Cryst. Solids 97, 1 (1987).

    Google Scholar 

  23. C. Chen, K. Abe, H. Kumomi, and J. Kanicki, IEEE T. Electron. Dev. 56, 1177 (2009).

    Article  Google Scholar 

  24. K. H. Ji, J. I. Kim, Y. G. Mo, J. H. Jeong, J. Y. Kwon, M. K. Ryu, and S. Y. Lee, Appl. Phys. Lett. 96, 262109 (2010).

    Article  Google Scholar 

  25. B. S. Yang, S. Oh, Y. J. Kim, S. J. Han, and H. J. Kim, J. Vac. Sci. Technol. B 32, 011202 (2014).

    Article  Google Scholar 

  26. B. D. Ahn, D.-W. Choi, C. Choi, and J.-S. Park, Appl. Phys. Lett. 105, 092103 (2014).

    Article  Google Scholar 

  27. U. K. Kim, S. H. Rha, J. H. Kim, Y. J. Chung, J. Jung, E. S. Hwang, J. Lee, T. J. Park, J.-H. Choi, and C. S. Hwang, J. Mater. Chem. 1, 6695 (2013).

    Article  Google Scholar 

  28. M. S. Rajachidambaram, A. Pandey, S. Vilayurganapathy, P. Pachimuthu, S. Thevuthasan, and G. S. Herman, Appl. Phys. Lett. 103, 171602 (2013).

    Article  Google Scholar 

  29. K. Nomura, T. Kamiya, E. Ikenaga, H. Yanagi, K. Kobayashi, and H. Hosono, J. Appl. Phys. 109, 073726 (2011).

    Article  Google Scholar 

  30. J. Robertson and Y. Guo, Appl. Phys. Lett. 104, 162102 (2014).

    Article  Google Scholar 

  31. C. B. Lee, B. S. Kang, A. Benayad, M. J. Lee, S.-E. Ahn, K. H. Kim, G. Stefanovich, Y. Park, and I. K. Yoo, Appl. Phys. Lett. 93, 042115 (2008).

    Article  Google Scholar 

  32. Z. Jin, T. Fukumura, M. Kawasaki, K. Ando, H. Saito, T. Sekiguchi, Y. Z. Yoo, M. Murakami, Y. Matsumoto, T. Hasegawa, and H. Koinuma, Appl. Phys. Lett. 78, 3824 (2001).

    Article  Google Scholar 

  33. H.-W. Zan, C.-C. Yeh, H.-F. Ment, C.-C. Tsai, and L.-H. Chen, Adv. Mater. 24, 3509 (2012).

    Article  Google Scholar 

  34. J. K. Jeong, J. Mater. Res. 28, 2071 (2013).

    Article  Google Scholar 

  35. R. B. M. Cross and M. M. De Souza, Appl. Phys. Lett. 89, 263513 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Kyeong Jeong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.T., Shin, Y., Yun, P.S. et al. Achieving high carrier mobility exceeding 70 cm2/Vs in amorphous zinc tin oxide thin-film transistors. Electron. Mater. Lett. 13, 406–411 (2017). https://doi.org/10.1007/s13391-017-1613-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-017-1613-2

Keywords

Navigation