Skip to main content
Log in

Investigation of the charge-storage behavior of electrochemically activated graphene oxide on supercapacitor electrodes in acidic electrolyte

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Herein, charge storage behavior of graphene oxide electrode was investigated after its electrochemical activation. X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), galvanostatic chargedischarge method (GCD), and electrochemical impedance spectroscopy (EIS) were employed for this analysis. From XPS analysis, a decrease of atomic ratio of C=C bond was observed after electrochemical activation from 86.94 to 79.64%. Also, enhancement of specific capacitance appeared from 54.1 to 65.7 F g−1 at 20 mV s−1, and rectangular shape in CV became more collapsed in activated grapheme oxide electrode. In the GCD profiles, similarly, difference of resistance values at high and low cut-off potential became larger after activation, indicative of increased polarization. From EIS, detailed resistance components were compared, which reflected that the increased resistance and higher capacitance after activation was probably attributed to larger amount of surface functional groups after activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. R. F. Allen and J. Bard, Electrochemical Methods: Fundamentals and Applications, 2nd Edition, p. 1, John Wiley & Sons, New York, USA (2001).

    Google Scholar 

  2. J. Keskinen, S. Lehtimäki, A. Dastpak, S. Tuukkanen, T. Flyktman, T. Kraft, A. Railanmaa, and D. Lupo, Electron. Mater. Lett. 12, 795 (2016).

    Article  Google Scholar 

  3. E. Choi, D. Kim, I. Lee, S. J. Chae, A. Kim, S. G. Pyo, and S. Yoon, Electron. Mater. Lett. 11, 836 (2015).

    Article  Google Scholar 

  4. X. Cao, B. Zheng, W. Shi, J. Yang, Z. Fan, Z. Luo, X. Rui, B. Chen, Q. Yan, and H. Zhang, Adv. Mater. 27, 4695 (2015).

    Article  Google Scholar 

  5. S. Lv, F. Fu, S. Wang, J. Huang, and L. Hu, Electron. Mater. Lett. 11, 633 (2015).

    Article  Google Scholar 

  6. T. Y. Kim, G. Jung, S. Yoo, K. S. Suh, and R. S. Ruoff, ACS Nano 7, 6899 (2013).

    Article  Google Scholar 

  7. F. T. Johra and W.-G. Jung, Appl. Surf. Sci. 357, 1911 (2015).

    Article  Google Scholar 

  8. B. Xu, S. Yue, Z. Sui, X. Zhang, S. Hou, G. Cao, and Y. Yang, Energ. Environ. Sci. 4, 2826 (2011).

    Article  Google Scholar 

  9. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, ACS Nano 4, 4806 (2010).

    Article  Google Scholar 

  10. J. H. Jang and S. M. Oh, J. Electrochem. Soc. 151, A571 (2004).

    Article  Google Scholar 

  11. J. H. Jang, S. Yoon, B. H. Ka, Y. Jung, and S. M. Oh, J. Electrochem. Soc. 152, A1418 (2005).

    Article  Google Scholar 

  12. D. J. Li, Z. Huang, T. H. Hwang, R. Narayan, J. W. Choi, and S. O. Kim, Electron. Mater. Lett. 12, 211 (2016).

    Article  Google Scholar 

  13. P. Shabani, A. Qarehbaqi, and F. A. Boroumand, Electron. Mater. Lett. 12, 107 (2016).

    Article  Google Scholar 

  14. E. Kang, S. An, S. Yoon, J. K. Kim, and J. Lee, J. Mater. Chem. 20, 7416 (2010).

    Article  Google Scholar 

  15. R. Kötz and M. Carlen, Electrochim. Acta 45, 2483 (2000).

    Article  Google Scholar 

  16. Y. Zhao, Y. Huang, Q. Wang, X. Wang, M. Zong, H. Wu, and W. Zhang, Electron. Mater. Lett. 9, 683 (2013).

    Article  Google Scholar 

  17. T. K. Kim, C. S. Rustomji, H.-M. Cho, D. Chun, J.-Y. Jung, E. Caldwell, Y. Kim, J. H. Han, and S. Jin, Electron. Mater. Lett. 12, 147 (2016).

    Article  Google Scholar 

  18. Y. Mun, C. Jo, T. Hyeon, J. Lee, K. S. Ha, K. W. Jun, S. H. Lee, S. W. Hong, H. I. Lee, S. Yoon, and J. Lee, Carbon 64, 391 (2013).

    Article  Google Scholar 

  19. N. V. Krstajić, V. D. Jović, L. Gajić-Krstajić, B. M. Jović, A. L. Antozzi, and G. N. Martelli, Int. J. Hydrogen Energ. 33, 3676 (2008).

    Article  Google Scholar 

  20. J. Kubisztal, A. Budniok, and A. Lasia, Int. J. Hydrogen Energ. 32, 1211 (2007).

    Article  Google Scholar 

  21. C. Portet, P. L. Taberna, P. Simon, and E. Flahaut, J. Power Sources 139, 371 (2005).

    Article  Google Scholar 

  22. Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, and Y. Chen, J. Phys. Chem. C 113, 13103 (2009).

    Article  Google Scholar 

  23. S. Yoon, C. W. Lee, and S. M. Oh, J. Power Sources 195, 4391 (2010).

    Article  Google Scholar 

  24. S. Yoon, J. Lee, T. Hyeon, and S. M. Oh, J. Electrochem. Soc. 147, 2507 (2000).

    Article  Google Scholar 

  25. B. Konkena and S. Vasudevan, J. Phys. Chem. Lett. 3, 867 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sung Gyu Pyo or Songhun Yoon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Choi, E., Lee, I. et al. Investigation of the charge-storage behavior of electrochemically activated graphene oxide on supercapacitor electrodes in acidic electrolyte. Electron. Mater. Lett. 13, 434–441 (2017). https://doi.org/10.1007/s13391-017-1609-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-017-1609-y

Keywords

Navigation