Skip to main content
Log in

Temperature-dependent DC characteristics of AlInN/GaN high-electron-mobility transistors

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

A 1.5 μm gate AlInN:Mg/GaN HEMT, exhibiting a maximum drain current (I DS,max) of 700 mA/mm at a gate bias voltage (V GS) of 0 V and a maximum transconductance (g m,max) of 190 mS/mm at drain-source voltage (V DS) of 5 V, was analyzed at temperatures ranging from 210 K to 420 K. It was found that I DS,max and g m,max have weak temperature dependence with a power-law relation of ~T −0.5, owing to suppressed optical phonon scattering. The threshold voltage (V th) was found to be stable under increasing temperatures owing to the use of a semi-insulating AlInN:Mg barrier. This indicates that AlInN:Mg/GaN HEMTs are promising candidates for high-temperature electronics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Nanjo, M. Takeuchi, M. Suita, Y. Abe, T. Oishi, Y. Tokuda, and Y. Aoyagi, Appl. Phys. Express 1, 011101 (2008).

    Article  Google Scholar 

  2. J. Kuzmik, A. Kostopoulos, G. Konstantinidis, J.-F. Carlin, A. Georgakilas, and D. Pogany, IEEE T. Electron. Dev. 53, 422 (2006).

    Article  Google Scholar 

  3. P. Das, N. N. Halder, R. Kumar, S. Kr. Jana, S. Kabi, B. Borisov, A. Dabiran, P. Chow, and D. Biswas, Electron. Mater. Lett. 10, 1087 (2014).

    Article  Google Scholar 

  4. T.-T. Luong, B. T. Tran, Y.-T. Ho, M.-T.-H. Ha, Y.-L. Hsiao, S.-C. Liu, Y.-S. Chiu, and E.-Y. Chang, Electron. Mater. Lett. 11, 217 (2015).

    Article  Google Scholar 

  5. A. Chakraborty, S. Ghosh, P. Mukhopadhyay, S. K. Jana, S. M. Dinara, A. Bag, M. K. Mahata, R. Kumar, S. Das, P. Das, and D. Biswas, Electron. Mater. Lett. 12, 232 (2016).

    Article  Google Scholar 

  6. J. Kuzmik, Semicond. Sci. Technol. 17, 540 (2002).

    Article  Google Scholar 

  7. W. S. Tan, M. J. Uren, P. W. Fry, P. A. Houston, R. S. Balmer, and T. Martin, Solid-State Electron. 50, 511 (2006).

    Article  Google Scholar 

  8. S. Vitanov, V. Palankovski, S. Maroldt, and R. Quay, Solid- State Electron. 54, 1105 (2010).

    Article  Google Scholar 

  9. M. Hatano, N. Kunishio, H. Chikaoka, J. Yamazaki, Z. B. Makhzani, N. Yafune, and M. Kuzuhara, Proc. Inter. Conf. CS MANTECH, p. 101, CS MANTECH, Portland, Oregon, USA (2010).

    Google Scholar 

  10. S. Kim, H. J. Kim, S. Choi, Z. Lochner, J.-H. Ryou, R. D. Dupuis, and H. Kim, Electron. Lett. 48, 1306 (2012).

    Article  Google Scholar 

  11. M. J. Uren, K. J. Nash, R. S. Balmer, T. Martin, E. Morvan, N. Caillas, S. L. Delage, D. Ducatteau, B. Grimbert, and J. C. De Jaeger, IEEE T. Electron. Dev. 53, 395 (2006).

    Article  Google Scholar 

  12. D. Donoval, M. Florovic, D. Gregušová, J. Kovác, and P. Kordoš, Microelectron. Reliab. 48, 1669 (2008).

    Article  Google Scholar 

  13. J. Xie, X. Ni, M. Wu, J. H. Leach, Ü. Özgür, and H. Morkoç, Appl. Phys. Lett. 91, 132116 (2007).

    Article  Google Scholar 

  14. Z. H. Liu, S. Arulkumaran, and G. I. Ng, Appl. Phys. Lett. 94, 142105 (2009).

    Article  Google Scholar 

  15. A. Fontserè, A. Pérez-Tomás, M. Placidi, P. Fernández-Martínez, N. Baron, S. Chenot, Y. Cordier, J. C. Moreno, P. M. Gammond, and M. R. Jennings, Microelectron. Eng. 88, 3140 (2011).

    Article  Google Scholar 

  16. M. Hajlasz, J. J. T. M. Donkers, S. J. Sque, S. B. S. Heil, D. J. Gravesteijn, F. J. R. Rietveld, and J. Schmitz, Appl. Phys. Lett. 104, 242109 (2014).

    Article  Google Scholar 

  17. A. Pérez-Tomás, M. Placidi, N. Baron, S. Chenot, Y. Cordier, J. C. Moreno, A. Constant, P. Godignon, and J. Millán, J. Appl. Phys. 106, 074519 (2009).

    Article  Google Scholar 

  18. J. S. Blakemore, J. Appl. Phys. 53, R123 (1982).

    Article  Google Scholar 

  19. I. Daumiller, C. Kirchner, M. Kamp, K. J. Ebeling, and E. Kohn, IEEE Electron. Dev. Lett. 20, 448 (1999).

    Article  Google Scholar 

  20. P. M. Solomon and H. Morkoç, IEEE T. Electron. Dev. 31, 1015 (1984).

    Article  Google Scholar 

  21. S. Arulkumaran, Z. H. Liu, G. I. Ng, W. C. Cheong, R. Zeng, J. Bu, H. Wang, K. Radhakrishnan, and C. H. Tan, Thin Solid Films 515, 4517 (2007).

    Article  Google Scholar 

  22. K. Takhar, U. P. Gomes, K. Ranjan, S. Rathi, and D. Biswas, Proc. IOP Conf. Ser. Mater. Sci. Eng. 73, 1 (2015).

    Google Scholar 

  23. S. Arulkumaran, T. Egawa, H. Ishikawa, M. Umeno, and T. Jimbo, IEEE T. Electron. Dev. 48, 573 (2001).

    Article  Google Scholar 

  24. F. Husna, M. Lachab, M. Sultana, V. Adivarahan, Q. Fareed, and A. Khan, IEEE T. Electron. Dev. 59, 2424 (2012).

    Article  Google Scholar 

  25. P. D. C. King, T. D. Veal, A. Adikimenakis, H. Lu, L. R. Bailey, E. Iliopoulos, A. Georgakilas, W. J. Schaff, and C. F. McConville, Appl. Phys. Lett. 92, 172105 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kwang-Soon Ahn or Hyunsoo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Ahn, KS., Ryou, JH. et al. Temperature-dependent DC characteristics of AlInN/GaN high-electron-mobility transistors. Electron. Mater. Lett. 13, 302–306 (2017). https://doi.org/10.1007/s13391-017-1606-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-017-1606-1

Keywords

Navigation