Skip to main content
Log in

Effect of the graphene oxide reduction temperature on supercapacitor performance

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In this study, we investigated the influence of the reduction temperature on graphene oxide. After performing the thermal reduction at specific temperatures (200, 600, and 1000 °C), the morphological and crystallographic changes were investigated by several analysis methods. The reduced graphene oxides were used as supercapacitor electrodes and analyzed with various electrochemical techniques. The capacitance exhibited an increase up to 600 °C before decreasing abruptly at 1000 °C. This behavior was ascribed to the limited ionic accessibility into the compact graphene layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. J. Cai, Q. Zhang, and X. Y. Song, Electron. Mater. Lett. 12, 830 (2016).

    Article  Google Scholar 

  2. K. Torvinen, S. Lehtimäki, J. T. Keränen, J. Sievänen, J. Vartiainen, E. Hellén, D. Lupo, and S. Tuukkanen, Electron. Mater. Lett. 11, 1040 (2015).

    Article  Google Scholar 

  3. Q. Zhang, Y. Li, Y. Feng, and W. Feng, Electrochim. Acta 90, 95 (2013).

    Article  Google Scholar 

  4. J. Zhang and X. Zhao, J. Phys. Chem. C 116, 5420 (2012).

    Article  Google Scholar 

  5. Y. Bai, R. Rakhi, W. Chen, and H. N. Alshareef, J. Power Sources 233, 313 (2013).

    Article  Google Scholar 

  6. V. H. Luan, H. N. Tien, L. T. Hoa, N. T. M. Hien, E.-S. Oh, J. Chung, E. J. Kim, W. M. Choi, B.-S. Kong, and S. H. Hur, J. Mater. Chem. A 1, 208 (2013).

    Article  Google Scholar 

  7. B. Lee and J. R. Yoon, Electron. Mater. Lett. 9, 871 (2013).

    Article  Google Scholar 

  8. L.-J. Xie, J.-F. Wu, C.-M. Chen, C.-M. Zhang, L. Wan, J.-L. Wang, Q.-Q. Kong, C.-X. Lv, K.-X. Li, and G.-H. Sun, J. Power Sources 242, 148 (2013).

    Article  Google Scholar 

  9. J. Yang and S. Gunasekaran, Carbon 51, 36 (2013).

    Article  Google Scholar 

  10. E. Choi, D. Kim, I. Lee, S. J. Chae, A. Kim, S. G. Pyo, and S. Yoon, Electron. Mater. Lett. 11, 836 (2015).

    Article  Google Scholar 

  11. B. Xu, S. Yue, Z. Sui, X. Zhang, S. Hou, G. Cao, and Y. Yang, Energy Environ. Sci. 4, 2826 (2011).

    Article  Google Scholar 

  12. K. Zhang, L. Mao, L. L. Zhang, H. S. O. Chan, X. S. Zhaob, and J. Wu, J. Mater. Chem. 21, 7302 (2011).

    Article  Google Scholar 

  13. Q. Zhang, J. Rong, D. Ma, and B. Wei, Energy Environ. Sci. 4, 2152 (2011).

    Article  Google Scholar 

  14. X. Mu, X. Liu, K. Zhang, J. Li, J. Zhou, E. Xie, and Z. Zhang, Electron. Mater. Lett. 12, 296 (2016).

    Article  Google Scholar 

  15. M. J. Kiani, E. Akbari, F. R. Kooshkaki, and A. Zeinalinezhad, Electron. Mater. Lett. 12, 219 (2016).

    Article  Google Scholar 

  16. S. Lv, F. Fu, S. Wang, J. Huang, and L. Hu, Electron. Mater. Lett. 11, 633 (2015).

    Article  Google Scholar 

  17. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Nature 442, 282 (2006).

    Article  Google Scholar 

  18. B. Zhao, P. Liu, Y. Jiang, D. Pan, H. Tao, J. Song, T. Fang, and W. Xu, J. Power Sources 198, 423 (2012).

    Article  Google Scholar 

  19. B. Dai, L. Fu, L. Liao, N. Liu, K. Yan, Y. Chen, and Z. Liu, Nano Res. 4, 434 (2011).

    Article  Google Scholar 

  20. S. Y. Chee, H. L. Poh, C. K. Chua, F. Šanek, Z. Sofer, and M. Pumera, Phys. Chem. Chem. Phys. 14, 12794 (2012).

    Article  Google Scholar 

  21. S. Some, Y. Kim, Y. Yoon, H. Yoo, S. Lee, Y. Park, and H. Lee, Scientific Reports 3, 1929 (2013).

    Article  Google Scholar 

  22. E. Raymundo-Piñero, M. Cadek, and F. Béguin, Adv. Funct. Mater. 19, 1032 (2009).

  23. E. Kang, S. An, S. Yoon, J. K. Kim, and J. Lee, J. Mater. Chem. 20, 7416 (2010).

    Article  Google Scholar 

  24. Q. Bao, S. Bao, C. M. Li, X. Qi, C. Pan, J. Zang, Z. Lu, Y. Li, D. Y. Tang, S. Zhang, and K. Lian, J. Phys. Chem. C 112, 3612 (2008).

    Article  Google Scholar 

  25. C.-T. Hsieh and H. Teng, Carbon 40, 667 (2002).

    Article  Google Scholar 

  26. B. Xu, F. Wu, F. Wang, S. Chen, G.-P. Cao, and Y.-S. Yang, Chinese J. Chem. 24, 1505 (2006).

    Article  Google Scholar 

  27. C. Jo, J. Hwang, H. Song, A. H. Dao, Y.-T. Kim, S. H. Lee, S. W. Hong, S. Yoon, and J. Lee, Adv. Funct. Mater. 23, 3713 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sung Gyu Pyo or Songhun Yoon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, E., Kim, J., Cui, Y. et al. Effect of the graphene oxide reduction temperature on supercapacitor performance. Electron. Mater. Lett. 13, 324–329 (2017). https://doi.org/10.1007/s13391-017-1603-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-017-1603-4

Keywords

Navigation