Skip to main content
Log in

Improved electrochemical performance of polyindole/carbon nanotubes composite as electrode material for supercapacitors

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Polyindole/carbon nanotubes (PIN/CNTs) composite was prepared by an in-situ chemical oxidative polymerization of indole monomer with CNTs using ammonium persulfate as oxidant. The obtained composite material was characterized by SEM, TEM, FT-IR, Raman spectroscopy, XPS, XRD and BET surface areas measurements. It was found that the CNTs were incorporated into the PIN matrix and nanoporous structure was formed. Spectroscopy results showed that interfacial interaction bonds might be formed between the polyindole chains and CNTs during the in-situ polymerization. PIN/CNTs composite was evaluated by electrochemical impedance spectroscopy, cyclic voltammetry and charge/discharge tests to determine electrode performances in relation to supercapacitors properties in both aqueous and non-aqueous system. A maximum specific capacitance and specific volumetric capacitance of 555.6 F/g and 222.2 F/cm3 can be achieved at 0.5 A/g in non-aqueous system. It also displayed good rate performance and cycling stability. The specific capacitance retention is over 60% at 10 A/g and 91.3% after 5000 cycles at 2 A/g, respectively. These characteristics point to its promising applications in the electrode material for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Jayalakshmi and K. Balasubramanian, Int. J. Electrochem. Sci. 3, 1196 (2008).

    Google Scholar 

  2. C. D. Oancea, Sci. Res. Edu. Air. Force. 1, 605 (2012).

    Google Scholar 

  3. J. Liu, F. Mirri, M. Notarianni, M. Pasquali, and N. Mott, J. Power Sources 274, 823 (2015).

    Article  Google Scholar 

  4. K. Wang, H. Wu, Y. Meng, and Z. Wei, Small 10, 14 (2014).

    Article  Google Scholar 

  5. B. L. Ellis, P. Knauth, and T. Djenizian, Adv. Mater. 26, 3368 (2014).

    Article  Google Scholar 

  6. C. Yuan, H. B. Wu, Y. Xie, and X. W. Lou, Angew. Chem. 53, 1488 (2014).

    Article  Google Scholar 

  7. W. Yu, J. Chen, Y. Fu, J. Xu, and G. Nie, J. Electroanal. Chem. 700, 17 (2013).

    Article  Google Scholar 

  8. Z. Cai, J. Guo, H. Yang, and Y. Xu, J. Power Sources 279, 114 (2015).

    Article  Google Scholar 

  9. A. Kumar, L. Joshi, and R. Prakash, Ind. Eng. Chem. Res. 52, 9374 (2013).

    Article  Google Scholar 

  10. N. J. Dudney, Electrochem. Soc. Interf. 17, 44 (2008).

    Google Scholar 

  11. P. C. Pandey and R. Prakash, J. Electrochem. Soc. 145, 999 (1998).

    Article  Google Scholar 

  12. X. Zhou, Q. Chen, A. Wang, J. Xu, S. Wu, and J. Shen, ACS Appl. Mater. Inter. 8, 3776 (2016).

    Article  Google Scholar 

  13. H. Mudila, S. Rana, M. G. H. Zaidi, and S. Alam, Fuller. Nanotub. Car. N. 23, 20 (2013).

    Article  Google Scholar 

  14. Q. Zhou, D. Zhu, X. Ma, J. Xu, W. Zhou, and F. Zhao, RSC Adv. 6, 29840 (2016).

    Article  Google Scholar 

  15. W. Zhou, X. Ma, F. Jiang, D. Zhu, J. Xu, and B. Lu, Electrochim Acta 138, 270 (2014).

    Article  Google Scholar 

  16. J. N. Coleman, U. Khan, W. J. Blau, and Y. K. Gun’Ko, Carbon 44, 1624 (2006).

    Article  Google Scholar 

  17. J. Wang, Electroanalysis 17, 7 (2005).

    Article  Google Scholar 

  18. S. Murata, M. Imanishi, S. Hasegawa, and R. Namba, J. Power Sources 253, 104 (2014).

    Article  Google Scholar 

  19. O. Kanoun, C. Müller, A. Benchirouf, A. Sanli, T. N. Dinh, A. Al-Hamry, L. Bu, C. Gerlach, and A. Bouhamed, Sensors 14, 10042 (2014).

    Article  Google Scholar 

  20. A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai, Nature 424, 654 (2003).

    Article  Google Scholar 

  21. J. M. Boyea, R. E. Camacho, S. P. Sturano, and W. J. Ready, Nanotechnol. Law Bus. 4, 19 (2007).

    Google Scholar 

  22. Z. Niu, H. Dong, B. Zhu, J. Li, H. H. Hng, W. Zhou, X. Chen, and S. Xie, Adv. Mater. 25, 1058 (2013).

    Article  Google Scholar 

  23. J. Lin, C. Zhang, Z. Yan, Z. Yu, Z. Peng, R. H. Hauge, D. Natelson, and J. M. Tour, Nano. Lett. 13, 72 (2013).

    Article  Google Scholar 

  24. C. Peng, S. Zhang, D. Jewell, and G. Z. Chen, Prog. Nat. Sci. 18, 777 (2008).

    Article  Google Scholar 

  25. E. Frackowiak, V. Khomenko, K. Jurewicz, K. Lota, and F. Béguin, J. Power Sources 153, 413 (2006).

    Article  Google Scholar 

  26. Q. Xiao and Z. Xiao, Electrochim. Acta 48, 575 (2003).

    Article  Google Scholar 

  27. J. Yan, T. Wei, Z. Fan, W. Qian, M. Zhang, X. Shen, and F. Wei, J. Power Sources 195, 3041 (2010).

    Article  Google Scholar 

  28. V. Gupta and N. Miura, Electrochim. Acta 52, 1721 (2006).

    Article  Google Scholar 

  29. C. M. Chang, C. J. Weng, C. M. Chien, T. L. Chuang, T. Y. Lee, J. M. Yeh, and Y. Wei, J. Mater. Chem. A 46, 14719 (2013).

    Article  Google Scholar 

  30. C. Yang, X. Wang, P. Du, and P. Liu, Synth. Met. 179, 34 (2013).

    Article  Google Scholar 

  31. G. W. Huang, H. M. Xiao, and S. Y. Fu, J. Mater. Chem. C 15, 2758 (2014).

    Article  Google Scholar 

  32. R. P. Mahore, D. K. Burghate, and S. B. Kondawar, Adv. Mat. Lett. 5, 400 (2014).

    Article  Google Scholar 

  33. X. T. Huo, P. Zhu, G. Y. Han, and J. J. Xiong, Carbon 28, 319 (2014).

    Article  Google Scholar 

  34. S. W. Lee, H. Grebel, A. Kornblit, and D. Lopez, Synth. Met. 159, 462 (2009).

    Article  Google Scholar 

  35. J. Wang, K. Cai, S. Shen, and J. Yin, Synth. Met. 195, 132 (2014).

    Article  Google Scholar 

  36. N. Lalaoui, K. Elouarzaki, G. A. Le, M. Holzinger, and S. Cosnier, Chem. Commun. 49, 9281 (2013).

    Article  Google Scholar 

  37. M. Baibarac, I. Baltog, M. Scocioreanu, S. Lefrant, and J. Y. Mevellec, Synth. Met. 159, 2550 (2009).

    Article  Google Scholar 

  38. L. Joshi, A. K. Singh, and R. Prakash, Mater. Chem. Phy. 135, 80 (2012).

    Article  Google Scholar 

  39. A. M. B. R. Sainz, M. T. Martinez, J. F. Galindo, J. Sotres, A. M. Baro, B. Corraze, O. Chauvet, and W. K. Master, Adv. Mater. 17, 278 (2005).

    Article  Google Scholar 

  40. L. Li, Z. Y. Qin, X. Liang, Q. Q. Fan, Y. Q. Lu, W. H. Wu, and M. F. Zhu, J. Phys. Chem. C 113, 5502 (2009).

    Article  Google Scholar 

  41. Z. Cai, X. Shi, and R. Zhang, Mater. Lett. 92, 271 (2013).

    Article  Google Scholar 

  42. Y. Du, S. Z. Shen, W. D. Yang, K. F. Cai, and P. S. Casey, Synth. Met. 162, 375 (2012).

    Article  Google Scholar 

  43. S. An, T. Abdiryim, Y. Ding, and I. Nurulla, Mater. Lett. 62, 935 (2008).

    Article  Google Scholar 

  44. Z. Cai, R. Zhang, and X. Shi, Synth. Met. 162, 2069 (2012).

    Article  Google Scholar 

  45. D. Qu and H. Shi, J. Power Sources 74, 99 (1998).

    Article  Google Scholar 

  46. A. Sumboja, X. Wang, J. Yang, and P. S. Lee, Electrochim. Acta 65, 190 (2012).

    Article  Google Scholar 

  47. B. Wang, J. Qiu, H. Feng, and E. Sakai, Electrochim. Acta 151, 230 (2015).

    Article  Google Scholar 

  48. D. S. Patil, S. A. Pawar, R. S. Devan, Y. R. Ma, W. R. Bae, J. H. Kim, and P. S. Patil, Mater. Lett. 117, 248 (2014).

    Article  Google Scholar 

  49. H. Lee, H. Kim, M. S. Cho, J. Choi, and Y. Lee, Electrochim. Acta 56, 7460 (2011).

    Article  Google Scholar 

  50. C. Yang, X. Wang, P. Du, and P. Liu, Synth. Met. 179, 34 (2013).

    Article  Google Scholar 

  51. H. Liu, B. Xu, M. Jia, M. Zhang, B. Cao, X. Zhao, and Y. Wang, Appl. Surf. Sci. 332, 40 (2015).

    Article  Google Scholar 

  52. J. Y. Kim, K. H. Kim, and K. B. Kim, J. Power Sources 176, 396 (2008).

    Article  Google Scholar 

  53. K. Lota, G. Lota, A. Sierczynska, and I. Acznik, Synth. Met. 203, 44 (2015).

    Article  Google Scholar 

  54. L. L. Zhang, S. Y. Zhao, X. N. Tian, and X. S. Zhao, Langmuir 26, 17624 (2010).

    Article  Google Scholar 

  55. H. L. Cao, X. F. Zhou, and Y. M. Zhang, J. Power Sources 243, 715 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Jiang Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, ZJ., Zhang, Q. & Song, XY. Improved electrochemical performance of polyindole/carbon nanotubes composite as electrode material for supercapacitors. Electron. Mater. Lett. 12, 830–840 (2016). https://doi.org/10.1007/s13391-016-6190-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-016-6190-2

Keywords

Navigation