Skip to main content
Log in

High efficiency n-Si/p-Cu2O core-shell nanowires photodiode prepared by atomic layer deposition of Cu2O on well-ordered Si nanowires array

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

A highly efficient n-Si/p-Cu2O core-shell (C-S) nanowire (NW) photodiode was fabricated using Cu2O grown by atomic layer deposition (ALD) on a well-ordered Si NW array. Ordered Si nanowires arrays were fabricated by nano-sphere lithography to pattern metal catalysts for the metal-assisted etching of silicon, resulting in a Si NW arrays with a good arrangement, smooth surface and small diameter distribution. The ALD-Cu2O thin films were grown using a new non-fluorinated Cu precursor, bis(1-dimethylamino-2-methyl-2-butoxy)copper (C14H32N2O2Cu), and water vapor (H2O) at 140°C. Transmission electron microscopy equipped with an energy dispersive spectrometer confirmed that p-Cu2O thin films had been coated over arrayed Si NWs with a diameter of 150 nm (aspect ratio of ∼7.6). The C-S NW photodiode exhibited more sensitive photodetection performance under ultraviolet illumination as well as an enhanced photocurrent density in the forward biasing region than the planar structure diode. The superior performance of C-S NWs photodiode was explained by the lower reflectance of light and the effective carrier separation and collection originating from the C-S NWs structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Barth, F. Hernandez-Ramirez, J. D. Holmes, and A. Romano-Rodriguez, Prog. Mater. Sci. 55, 563 (2010).

    Article  Google Scholar 

  2. S.-W. Choi, A. Katoch, G.-J. Sun, J.-H. Kim, S.-H. Kim, and S. S. Kim, ACS Appl. Mater. Interfaces 6, 8281 (2014).

    Article  Google Scholar 

  3. J.-H. Kim, A. Katoch, S.-H. Kim, and S. S. Kim, ACS Appl. Mater. Interfaces 7, 15351 (2015).

    Article  Google Scholar 

  4. B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, Nature 449, 885 (2007).

    Article  Google Scholar 

  5. X. Wang, K. L. Pey, C. H. Yip, E. A. Fitzgerald, and D. A. Antoniadis, J. Appl. Phys. 108, 124303 (2010).

    Article  Google Scholar 

  6. K. Q. Peng and S. T. Lee, Adv. Mater. 23, 198 (2011).

    Article  Google Scholar 

  7. T. Yang, H. Wang, X. M. Ou, C. S. Lee, and X. H. Zhang, Adv. Mater. 24, 6199 (2012).

    Article  Google Scholar 

  8. K. Y. Ko, H. Kang, J. Kim, W. Lee, H. S. Lee, S. Im, J. Y. Kang, J.-M. Myoung, H.-G. Kim, S.-H. Kim, and H. Kim, Materials Science in Semiconductor Processing 27, 297 (2014).

    Article  Google Scholar 

  9. K. Y. Ko, H. Kang, W. Lee, C.-W. Lee, J. Park, H. S. Lee, S. Im, H.-G. Kim, S.-H. Kim, B.-W. Min, and H. Kim, Materials Science in Semiconductor Processing 33, 154 (2015).

    Article  Google Scholar 

  10. S. Park, S. Kim, G.-J. Sun, S.-B. Choi, S. Lee, and C. Lee, Electron. Mater. Lett. 11, 896 (2015).

    Article  Google Scholar 

  11. C. Ngangbam, A. Mondal, and B. Choudhuri, Electron. Mater. Lett. 11, 758 (2015).

    Article  Google Scholar 

  12. A. A. Ogwu, E. Bouquerel, O. Ademosu, S. Moh, E. Crossan, and F. Placido, J. Phys. D: Appl. Phys. 38, 266 (2005).

    Article  Google Scholar 

  13. E. Fortunato, V. Figueiredo, P. Barquinha, E. Elamurugu, R. Barros, G. Goncalves, S. K. Park, C. Hwang, and R. Martins, Appl. Phys. Lett. 96, 192102 (2010).

    Article  Google Scholar 

  14. H. T. Hsueh, S. J. Chang, W. T. Weng, C. L. Hsu, T. J. Hsueh, F. T. Hung, S. L. Wu, and B. T. Dai, IEEE Trans Nanotechnol. 8, 127 (2012).

    Article  Google Scholar 

  15. T. Tsai, S. Chang, T. Hsueh, H. Hsueh, W. Weng, C. Hsu, and B. Dai, Nanoscale Res. Lett. 6, 575 (2011).

    Article  Google Scholar 

  16. R. A. Ismail, Journal of Semiconductor Technology and Science 9, 1 (2009).

    Article  Google Scholar 

  17. J. Zhang, J. Liu, Q. Peng, X. Wang, and Y. Li, Chem. Mater. 18, 867 (2006).

    Article  Google Scholar 

  18. A. Chen, S. Haddad, Y. C. Wu, T. N. Fang, S. Kaza, and Z. Lan, Appl. Phys. Lett. 92, 013503 (2008).

    Article  Google Scholar 

  19. W. Yang, W. Kim, and S. Rhee, Thin Solid Films 517, 967 (2008).

    Article  Google Scholar 

  20. D. A. Chavez, E. Toumayan, F. Lora, C. McCaslin, and R. A. Adomaitis, Chem. Vap. Dep. 16, 336 (2010).

    Article  Google Scholar 

  21. D. Barreca, A. Gasparotto, C. Maccato, E. Tondello, O. I. Lebedev, and G. V. Tendeloo, Crystal Growth & Design 9, 5 (2009).

    Article  Google Scholar 

  22. K. Matsuzaki, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, Appl. Phys. Lett. 93, 202107 (2008).

    Article  Google Scholar 

  23. M. F. Al-Kuhaili, Vacuum 82, 623 (2008).

    Article  Google Scholar 

  24. R. Liu, E. W. Bohannan, J. A. Switzer, F. Oba, and F. Ernst, Appl. Phys. Lett. 83, 1944 (2003).

    Article  Google Scholar 

  25. J. Xu, Y. Cao, J. Wei, J.-L. Sun, J. Xu, and J. He, Mater. Res. Exp. 1, 015002 (2014).

    Article  Google Scholar 

  26. H. Kim, S. I. Bae, S.-H. Kim, K. Ko, H. Kim, H.-W. Kwon, J.-H. Hwang, and D.-J. Lee, Appl. Surf. Sci. 349, 673 (2015).

    Article  Google Scholar 

  27. H. Zhou, G. Fang, L. Yuan, C. Wang, and X. Yang, Appl. Phys. Lett. 94, 013503 (2009).

    Article  Google Scholar 

  28. B. M. Kayes, H. A. Atwater, and N. S. Lewis, J. Appl. Phys. 97, 114302 (2005).

    Article  Google Scholar 

  29. H. Kang, J. Park, T. Choi, H. Jung, K. H. Lee, S. Im, and H. Kim, Appl. Phys. Lett. 100, 041117 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo-Hyun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Kim, SH., Ko, K.Y. et al. High efficiency n-Si/p-Cu2O core-shell nanowires photodiode prepared by atomic layer deposition of Cu2O on well-ordered Si nanowires array. Electron. Mater. Lett. 12, 404–410 (2016). https://doi.org/10.1007/s13391-016-5356-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-016-5356-2

Keywords

Navigation