Skip to main content
Log in

Control of point defects in the Cu(In,Ga)Se2 film synthesized at low temperature from a Cu/In2Se3 stacked precursor

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Low-temperature fabrication of Cu(In,Ga)Se2 (CIGS) film is essential for flexible CIGS solar cells. A large-grained CIGS film was synthesized with a Se-deficient Cu/In,Ga)2Se3 stacked precursor by reacting at 500 °C in a vacuum and was then subsequently annealing in Se environment. The CIGS solar cell with the as-prepared CIGS film had a poor cell performance due to a very low Ga composition at the CIGS surface. The surface Ga composition was controlled to 0.2 by supplying In, Ga, and Se in a temperature range of 350 to 500 °C. From an analysis of the photoluminescence spectra, we found that the point defects, Se vacancy and In-in-Cu antisite, in the CIGS film were greatly reduced by annealing below 450 °C. The short-circuit current was pronouncedly increased in the CIGS cells. The open-circuit voltage depended on both the Ga composition and Cu composition at the CIGS surface. In particular, a low Cu composition at the CIGS surface was essential for the higher performance solar cells. Our results indicated that CIGSs film synthesized at high temperature must be annealed at 350 °C or below to reduce undesirable point defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Kamada, W. N. Shafarman, and R. W. Birkmire, Sol. Energ. Mat. Sol. C. 94, 451 (2010).

    Article  Google Scholar 

  2. A. Cho, S. Ahn, J. H. Yun, J. Gwak, H. Song, and K. Yoon, J. Mater. Chem. 22, 17893 (2012).

    Article  Google Scholar 

  3. A. Gupta and S. Isomura, Sol. Energ. Mat. Sol. C. 53, 385 (1998).

    Article  Google Scholar 

  4. D. J. Schroeder, G. D. Berry, and A. A. Rockett, Appl. Phys. Lett. 69, 4068 (1996).

    Article  Google Scholar 

  5. F. B. Dejene, Sol. Energ. Mat. Sol. C. 93, 577 (2009).

    Article  Google Scholar 

  6. W. Li, Y. Sun, W. Liu, and L. Zhou, Sol. Energy 80, 191 (2006).

    Article  Google Scholar 

  7. M. Uchikoshi and S. Shirakata, Jpn. J. Appl. Phys. 51, 10NC20 (2012).

    Article  Google Scholar 

  8. J. H. Shi, Z. Q. Li, D. W. Zhang, Q. Q. Liu, Z. Sun, and S. M. Huang, Prog. Photovoltaics: Res. Appl. 19, 160 (2011).

    Article  Google Scholar 

  9. J. A. Frantz, R. Y. Bekele, V. Q. Nguyen, J. S. Sanghera, A. Bruce, S. V. Frolov, M. Cyrus, and I. D. Aggarwal, Thin Solid Films 519, 7763 (2011).

    Article  Google Scholar 

  10. A. J. Zhou, D. Mei, X. G. Kong, X. H. Xu, L. D. Feng, X. Y. Dai, T. Gao, and J. Z. Li, Thin Solid Films 520, 6068 (2012).

    Article  Google Scholar 

  11. G. S. Jung, S. H. Mun, D. H. Shin, R. B. V. Chalapathy, B. T. Ahn, and H. S. Kwon, RSC Adv. 5, 7611 (2015).

    Article  Google Scholar 

  12. Y. Yan, F. Jiang, L. Liu, Z. Yu, Y. Zhang, and Y. Zhao, Electron. Mater. Lett. 12, 59 (2016).

    Article  Google Scholar 

  13. K. B. Kim, M. Kim, J. Baek, Y. J. Park, J. R. Lee, J. S. Kim, and C. Jeon, Electron. Mater. Lett. 10, 247 (2014).

    Article  Google Scholar 

  14. D. H. Shin, J. H. Kim, Y. M. Shin, K. H. Yoon, E. A. Al- Ammar, and B. T. Ahn, Prog. Photovoltaics: Res. Appl. 21, 217 (2013).

    Article  Google Scholar 

  15. P. Jackson, D. Hariskos, R. Wuerz, W. Wischmann, and M. Powalla, Phys. Status Solidi RRL 1-4, DOI 10.1002 (2014).

  16. I. Barin, Thermochemical Data of Pure Substances, VCH Verlagsgesellschaft mbH, Germany (1989).

    Google Scholar 

  17. S. H. Wei and S. B. Zhang, J. Phys. Chem. Solids 66, 1994 (2005).

    Article  Google Scholar 

  18. H. Neumann, G. Kuhn, and W. Moller, Phys. Status Solidi B 144, 565 (1987).

    Article  Google Scholar 

  19. T. Maeda and T. Wada, J. Phys. Chem. Solids 66, 1924 (2005).

    Article  Google Scholar 

  20. S. B. Zhang, S. H. Wei, A. Zunger, and H. Katayama-Yoshida, Phys. Rev. B 57, 9642 (1998).

    Article  Google Scholar 

  21. H. Neumann and R. D. Tomlinson, Sol. Cells 28, 1 (1990).

    Article  Google Scholar 

  22. J. H. Schon and E. Bucher, Sol. Energ. Mat. Sol. C. 57, 229 (1999).

    Article  Google Scholar 

  23. P. K. Johnson, J. T. Heath, J. D. Cohen, K. Ramanathan, and J. R. Sites, Prog. Photovoltaics: Res. Appl. 1, 579 (2005).

    Google Scholar 

  24. W. K. Metzger, I. L. Repins, M. Romero, P. Dippo, M. Contreras, R. Noufi, and D. Levi, Thin Solid Films 517, 2360 (2009).

    Article  Google Scholar 

  25. L. L. Kerr, S. S. Li, S. W. Johnston, T. J. Anderson, O. D. Crisalle, W. K. Kim, J. Abushama, and R. N. Noufi, Solid-State Electron. 48, 1579 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung Tae Ahn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, G.S., Kim, S., Ko, Y.M. et al. Control of point defects in the Cu(In,Ga)Se2 film synthesized at low temperature from a Cu/In2Se3 stacked precursor. Electron. Mater. Lett. 12, 472–478 (2016). https://doi.org/10.1007/s13391-016-4009-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-016-4009-9

Keywords

Navigation