Skip to main content
Log in

The influence of hydrogenation on the electrical properties of impurity-contaminated silicon grain boundaries

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In this article, the impact of hydrogenation on the electrical properties of impurity (Fe)-contaminated silicon grain boundaries (GBs) is investigated using capacitance-voltage (C-V) and capacitance transient (C-t) techniques with hybrid orientation direct-silicon-bonded (DSB) wafers. The samples consist of a 2.3 μm thick (110) Si layer on a p-type (100) Si substrate produced via hydrophilic wafer bonding, cleavage, and epithickening. It was found that for a relatively clean GB, the density of the GB states (D GB ) is ∼6 × 1012 eV−1cm−2, and the charge neutral level is ∼0.53 eV from the valance band. D GB increases to more than 2 × 1013 eV−1cm−2after the Fe contamination, which is reduced to ∼1 × 1013 eV−1cm−2 after the hydrogenation treatment. The charge neutral level, which shifts toward the conduction band after the Fe contamination, is reversed after hydrogenation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Carnel, I. Gordon, D. Van Gestel, G. Beaucarne, J. Poortmans, and A. Stesmans, J. Appl. Phys. 100, 063702 (2006).

    Article  Google Scholar 

  2. Y. H. Yang, K. M. Ahn, S. M. Kang, S. H. Moon, and B. T. Ahn, Electron. Mater. Lett. 10, 1103 (2014).

    Article  Google Scholar 

  3. H. Zhang, Z. Li, J. Qian, Q. Guan, X. Du, Y. Cui, and J. Zhang, Electron. Mater. Lett. 10, 433 (2014).

    Article  Google Scholar 

  4. G. E. Pike, Phys. Rev. B 30, 795 (1984).

    Article  Google Scholar 

  5. A. W. Degroot, G. C. McGonigal, D. J. Thomson, and H. C. Card, J. Appl. Phys. 55, 312 (1984).

    Article  Google Scholar 

  6. C. H. Seager, J. Appl. Phys. 52, 3960 (1981).

    Article  Google Scholar 

  7. F. Cleri, P. Keblinski, L. Colombo, S. R. Phillpot, and D. Wolf, Phys. Rev. B 57, 6247 (1998).

    Article  Google Scholar 

  8. J. Chen, D. Yang, Z. Xi, and T. Sekiguchi, J. Appl. Phys. 97, 033701 (2005).

    Article  Google Scholar 

  9. M. Yang, V. W. C. Chan, K. K. Chan, L. Shi, D. M. Fried, J. H. Stathis, A. I. Chou, E. Gusev, J. A. Ott, L. E. Burns, M. V. Fischetti, and M. Ieong, IEEE Trans. Electron. Devices 53, 965 (2006).

    Article  Google Scholar 

  10. A. J. Tavendale, A. A. Williams, and S. J. Pearton, Appl. Phys. Lett. 48, 590 (1986).

    Article  Google Scholar 

  11. T. Zundel and J. Weber, Phys. Rev. B 43, 4361 (1991).

    Article  Google Scholar 

  12. Y. Park, J. Lu, and G. Rozgonyi, Electron Mater. Lett. 6, 1 (2010).

    Article  Google Scholar 

  13. C. H. Seager, G. E. Pike, and D. S. Ginley, Phys. Rev. Lett. 43, 532 (1979).

    Article  Google Scholar 

  14. Y. Park, J. Lu, and G. Rozgonyi, J. Appl. Phys. 105, 014912 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongkook Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, Y., Lu, J., Park, JH. et al. The influence of hydrogenation on the electrical properties of impurity-contaminated silicon grain boundaries. Electron. Mater. Lett. 11, 993–997 (2015). https://doi.org/10.1007/s13391-015-5214-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-015-5214-7

Keywords

Navigation