Skip to main content
Log in

Stability study of solution-processed zinc tin oxide thin-film transistors

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In this study, the environmental dependence of the electrical stability of solution-processed n-channel zinc tin oxide (ZTO) thin-film transistors (TFTs) is reported. Under a prolonged negative gate bias stress, a negative shift in threshold voltage occurs in atmospheric air, whereas a negligible positive shift in threshold voltage occurs under vacuum. In the positive bias-stress experiments, a positive shift in threshold voltage was invariably observed both in atmospheric air and under vacuum. In this study, the negative gate-bias-stress-induced instability in atmospheric air is explained through an internal potential in the ZTO semiconductor, which can be generated owing to the interplay between H2O molecules and majority carrier electrons at the surface of the ZTO film. The positive bias-stress-induced instability is ascribed to electron-trapping phenomenon in and around the TFT channel region, which can be further augmented in the presence of air O2 molecules. These results suggest that the interaction between majority carriers and air molecules will have crucial implications for a reliable operation of solution-processed ZTO TFTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. J. Coutts, T. O. Mason, J. D. Perkins, and D. S. Ginley, Electrochem. Soc. Proc. 11, 274 (1999).

    Google Scholar 

  2. T. Minami, Semicond. Sci. Technol. 20, S35 (2005).

    Article  Google Scholar 

  3. Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).

    Article  Google Scholar 

  4. R. Kumar, M. C. Mishra, B. K. Sharma, V. Vyas, and G. Sharma, Electron. Mater. Lett. 9, 19 (2013).

    Article  Google Scholar 

  5. J.-S. Park, T.-W. Kim, D. Stryakhilev, J.-S. Lee, S.-G. An, Y.-S. Pyo, D.-B. Lee, Y. G. Mo, D.-U. Jin, and H. K. Chung, Appl. Phys. Lett. 95, 013503 (2009).

    Article  Google Scholar 

  6. Y. Nakajima, M. Nakata, T. Takei, H. Fukagawa, G. Motomura, H. Tsuji, T. Shimizu, Y. Fujisaki, T. Kurita, and T. Yamamoto, J. Soc. Inf. Disp. 22, 137 (2014).

    Article  Google Scholar 

  7. S.-H. Lee and W.-S. Choi, Electron. Mater. Lett. 10, 737 (2014).

    Article  Google Scholar 

  8. J. K. Jeong, H. W. Yang, J. H. Jeong, Y.-G. Mo, and H. D. Kim, Appl. Phys. Lett. 93, 123508 (2008).

    Article  Google Scholar 

  9. K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, Appl. Phys. Lett. 95, 013502 (2009).

    Article  Google Scholar 

  10. S.-Y. Sung, J. H. Choi, U. B. Han, K. C. Lee, J.-H. Lee, J.-J. Kim, W. Lim, S. J. Pearton, D. P. Norton, and Y.-W. Heo, Appl. Phys. Lett. 96, 102107 (2010).

    Article  Google Scholar 

  11. P. Görrn, T. Riedl, and W. Kowalsky, J. Phys. Chem. C 113, 11126 (2009).

    Article  Google Scholar 

  12. D. Kim, S. Yoon, Y. Jeong, Y. Kim, B. Kim, and M. Hong, Appl. Phys. Express 5, 021101 (2012).

    Article  Google Scholar 

  13. M. Fakhri, H. Johann, P. Görrn, and T. Riedl, ACS Appl. Mater. Interfaces 4, 4453 (2012).

    Article  Google Scholar 

  14. Y.-C. Chen, T.-C. Chang, H.-W. Li, W.-F. Chung, C.-P. Wu, S.-C. Chen, J. Lu, Y.-H. Chen, and Y.-H. Tai, Appl. Phys. Lett. 100, 262908 (2012).

    Article  Google Scholar 

  15. X. Xu, L. Feng, S. He, Y. Jin, and X. Guo, IEEE Electron. Device Lett. 33, 1420 (2012).

    Article  Google Scholar 

  16. M. S. Rajachidambaram, A. Pandy, S. Vilayurganapathy, P. Nachimuthu, S. Thevuthasan, and G. S. Herman, Appl. Phys. Lett. 103, 171602 (2013).

    Article  Google Scholar 

  17. S. Vunnam, K. Ankireddy, J. Kellar, and W. Cross, Appl. Surf. Sci. 322, 1 (2014).

    Article  Google Scholar 

  18. A. Suresh and J. F. Muth, Appl. Phys. Lett. 92, 033502 (2008).

    Article  Google Scholar 

  19. A. J. Flewitt, J. D. Dutson, P. Beecher, D. Paul, S. J. Wakeham, M. E. Vickers, C. Ducati, S. P. Speakman, W. I. Milne, and M. J. Thwaites, Semicond. Sci. Technol. 24, 085002 (2009).

    Article  Google Scholar 

  20. Y. Jeong, C. Bae, D. Kim, K. Song, K. Woo, H. Shin, G. Cao, and J. Moon, ACS Appl. Mater. Interfaces 2, 611 (2010).

    Article  Google Scholar 

  21. W. P. Mathew, R. N. P. Vemuri, and T. L. Alford, Circuits and Systems 3, 295 (2012).

    Article  Google Scholar 

  22. B. Ryu, H.-K. Noh, E.-A. Choi, and K. J. Chang, Appl. Phys. Lett. 97, 022108 (2010).

    Article  Google Scholar 

  23. K. H. Ji, J.-I. Kim, Y.-G. Mo, J. H. Jeong, S. Yang, C.-S. Hwang, S.-H. Ko Park, M.-K. Ryu, S.-Y. Lee, and J. K. Jeong, IEEE Electron. Device Lett. 31, 1404 (2010).

    Article  Google Scholar 

  24. T.-J. Ha and A. Dodabalapur, Appl. Phys. Lett. 102, 123506 (2013).

    Article  Google Scholar 

  25. A. Janotti and C. G. Van de Walle, Nature Mater. 6, 44 (2007).

    Article  Google Scholar 

  26. A. Sato, K. Abe, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, Appl. Phys. Lett. 94, 133502 (2009).

    Article  Google Scholar 

  27. J. Li, F. Zhou, H.-P. Lin, W.-Q Zhu, J.-H. Zhang, X.-Y. Jiang, and Z.-L. Zhang, Curr. Appl. Phys. 12, 1228 (2012).

    Google Scholar 

  28. C. H. Ahn, S. H. Kim, S. W. Cho, M. G. Yu, and H. K. Cho, Phys. Status Solidi RRL 8, 328 (2014).

    Article  Google Scholar 

  29. S.-J. Seo, C. G. Choi, Y. H. Hwang, and B.-S. Bae, J. Phys. D: Appl. Phys. 42, 035106 (2009).

    Article  Google Scholar 

  30. F. I. Bohrer, C. N. Colesniuc, J. Park, M. E. Ruidiaz, I. K. Schuller, A. C. Kummel, and W. C. Trogler, J. Am. Chem. Soc. 131, 478 (2009).

    Article  Google Scholar 

  31. S. M. Sze and K. K. NG, Physics of Semiconductor Devices, p. 306, John Wiley & Sons, New Jersey (2007).

    Google Scholar 

  32. T. Jung, A. Dodabalapur, R. Wenz, and S. Mohapatra, Appl. Phys. Lett. 87, 182109 (2005).

    Article  Google Scholar 

  33. J. Park, L.-M. Do, J.-H. Bae, Y.-S. Jeong, C. Pearson, and M. C. Petty, Org. Electron. 14, 2101 (2013).

    Article  Google Scholar 

  34. R. B. M. Cross and M. M. De Souza, Appl. Phys. Lett. 89, 263513 (2006).

    Article  Google Scholar 

  35. J. H. Jeon, H. H. Choe, K. W. Lee, J. H. Shin, C. S. Hwang, S. H. Ko Park, and J. H. Seo, J. Korean Phys. Soc. 62, 1176 (2013).

    Article  Google Scholar 

  36. S.-J. Seo, J. H. Jeon, Y. H. Hwang, and B.-S. Bae, Appl. Phys. Lett. 99, 152102 (2011).

    Article  Google Scholar 

  37. W.-F. Chung, T.-C. Chang, H.-W. Li, S.-C. Chen, and Y.-C. Chen, Appl. Phys. Lett. 98, 152109 (2011).

    Article  Google Scholar 

  38. J. Bao, I. Shalish, Z. Su, R. Gurwitz, F. Capasso, X. Wang, and Z. Ren, Nanoscale Res. Lett. 6, 404 (2011).

    Article  Google Scholar 

  39. Y.-C. Chen, T.-C. Chang, H.-W. Li, W.-F. Chung, C.-P. Wu, S.-C. Chen, J. Lu, Y.-H. Chen, and Y.-H. Tai, Appl. Phys. Lett. 100, 262908 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaehoon Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Ndabakuranye, J.P., Kim, D.W. et al. Stability study of solution-processed zinc tin oxide thin-film transistors. Electron. Mater. Lett. 11, 964–972 (2015). https://doi.org/10.1007/s13391-015-5209-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-015-5209-4

Keywords

Navigation