Skip to main content
Log in

Unusual electronic behavior in the polycrystalline metal organic framework [(CH3)2NH2][Na0.5Fe0.5(HCOO)3]

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In this study, the dielectric properties of a polycrystalline metal organic framework [(CH3)2NH2][Na0.5Fe0.5(HCOO)3] (DMNaFe) sample were investigated. The DMNaFe sample exhibited a typical relaxor-like relaxation response in addition to a ferroelastic order-disorder phase transition. Analysis of the frequency dependence of the complex permittivity revealed the characteristic two-power-law dipolar glass relaxor behavior of the DMNaFe, indicating complex cluster formation in the material. Moreover, an unusual transformation associated with the ferroelastic phase transition from the generalized Mittag-Leffler relaxation pattern (low-temperature ordered phase) to the Havriliak-Negami one (high-temperature disordered phase) was detected. The relaxation data obtained for the investigated sample were interpreted based on the stochastic approach to relaxation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Ramesh and N. A. Spaldin, Nature Materials 6, 21 (2007).

    Article  Google Scholar 

  2. M. Fiebig, J. Phys. D: Appl. Phys. 38, R123 (2005).

    Article  Google Scholar 

  3. W. Li, Z. Zhang, E. G. Bithell, A. S. Batsanov, P. T. Barton, P. J. Saines, P. Jain, C. J. Howard, M. A. Carpenter, and A. K. Cheetham, Acta Materialia 61, 4928 (2013).

    Article  Google Scholar 

  4. R. I. Thomson, P. Jain, A. K. Cheetham, and M. A. Carpenter, Phys. Rev. B 86, 214304 (2012).

    Article  Google Scholar 

  5. Y. Tian, A. Stroppa, Y. Chai, L. Yan, S. Wang, P. Barone, S. Picozzi, and Y. Sun, Nature 4, 6064 (2014).

    Google Scholar 

  6. R. Ramesh, Nature 461, 1218 (2009).

    Article  Google Scholar 

  7. (a)_M. Maczka, A. Gagor, B. Macalik, A. Pikul, M. Ptak, and J. Hanuza, Inorg. Chem. 53, 457 (2014).

    Article  Google Scholar 

  8. M. Sanchez-Andujar, S. Presedo, S. Yanez-Vilar, S. Castro-Garcia, J. Shamir, and M. A. Senaris-Rodrigues, Inorg. Chem. 49, 1510 (2010).

    Article  Google Scholar 

  9. D. W. Fu, W. Zhang, H. L. Cai, Y. Zhang, J. Z. Ge, R. G. Xiong, S. D. Huang, and T. Nakamura, Angew. Chem. Int. Ed. 50, 11947 (2011).

    Article  Google Scholar 

  10. B. Pato-Doldan, M. Sanchez-Andujar, L. C. Gomez-Aguirre, S. Yanez-Vilar, J. Lopez-Beceiro, C. Gracia-Fernandez, A. A. Haghighirad, F. Ritter, S. Castro-Garcia, and M. Senaris-Rodriguez, Phys. Chem. Chem. Phys. 14, 8498 (2012).

    Article  Google Scholar 

  11. M. Maczka, A. Ciupa, A. Gagor, A. Sieradzki, A. Pikul, B. Macalik, and M. Drozd, Inorg. Chem. 53, 5260 (2014).

    Article  Google Scholar 

  12. M. Maczka, A. Pietraszko, L. Macalik, A. Sieradzki, J. Trzmiel, and A. Pikul, Dalton Transaction 43, 17075 (2015).

    Article  Google Scholar 

  13. A. A. Bokov and Z. G. Ye, J. Mater. Sci. 41, 31 (2006).

    Article  Google Scholar 

  14. P. Gao, J. Britson, J. R. Jokisaari, C. T. Nelson, S.-H. Baek, Y. Wang, C.-B. Eom, L.-Q. Chen, and X. Pan, Nature Comm. 4, 2791 (2013).

    Google Scholar 

  15. X. G. Tang, K.-H. Chew, and H. L. W. Chan, Acta Materialia 52, 5177 (2004).

    Article  Google Scholar 

  16. D. Viehland, M. Wuttig, and L. E. Cross, Ferroelectrics 120, 71 (1991).

    Article  Google Scholar 

  17. A. F. Morgownik and J. A. Mydosh, Solid State Commun., 3, 321 (1983).

    Article  Google Scholar 

  18. D. Viehland, S. J. Jang, L. E. Cross, and M. Wuttig, J. Appl. Phys. 68, 2916 (1990).

    Article  Google Scholar 

  19. (a)_A. K. Jonscher, Dielectric Relaxation in Solids, Chelsea Dielectrics Press, London (1983)

    Google Scholar 

  20. A. K. Jonscher, Universal Relaxation Law, Chelsea Dielectrics Press, London (1996).

    Google Scholar 

  21. A. A. Stanislavsky, K. Weron, and J. Trzmiel, Europhysics Letters 91, 40003 (2010).

    Article  Google Scholar 

  22. (a)_A. K. Jonscher, A. Jurlewicz, and K. Weron, Contemp. Phys. 44, 329 (2003)

    Google Scholar 

  23. A. Jurlewicz and K. Weron, J. Non-Cryst. Solids 305, 112 (2002)

    Article  Google Scholar 

  24. J. Trzmiel, A. Jurlewicz, and K. Weron, J. Phys. Condens. Matter 22, 095802 (2010).

    Article  Google Scholar 

  25. A. K. Jonscher, Dielectric Relaxation in Solids, Chelsea Dielectrics Press, London (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Sieradzki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sieradzki, A., Trzmiel, J., Ptak, M. et al. Unusual electronic behavior in the polycrystalline metal organic framework [(CH3)2NH2][Na0.5Fe0.5(HCOO)3]. Electron. Mater. Lett. 11, 1033–1039 (2015). https://doi.org/10.1007/s13391-015-5105-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-015-5105-y

Keywords

Navigation