Skip to main content
Log in

Improving the performance of organic solar cells using an electron transport layer of B4PyMPM self-assembled nanostructures

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The electron transport (ETL) layer improves power conversion efficiency (PCE) in organic photovoltaic cells (OPVs) through the incorporation of the cathode interfacial layers. Here, we introduce [bis-4,6-(3,5-di-4-pyridylphenyl)-2-methylpyrimidine] (B4PyMPM) as an n-type buffer layer consisting of a self-organized layer with a horizontal configuration in bulk heterojunction OPVs. It is demonstrated that self-organization of this B4PyMPM compound in which molecules adopt a horizontal orientation parallel to the organic semiconducting substrate induces a large local interfacial electric field that results in a significant enhancement of exciton dissociation. The device using B4PyMPM as an ETL layers has a significantly high open circuit voltage (V oc = 0.64 V), good short circuit current (J sc = 8.24 mA/cm2), good fill factor (FF = 0.65) and good PCE (3.42%). The physical properties of the device have also been studied from the measurements of impedance spectroscopy and photocurrent, which directly show the mechanisms occurring inside OPVs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, Science 258, 1474 (1992).

    Article  Google Scholar 

  2. S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, Nat. Photonics 3, 297 (2009).

    Article  Google Scholar 

  3. F. C. Krebs, Sol. Energy Mater. Sol. Cells. 93, 394 (2009).

    Article  Google Scholar 

  4. G. Li, R. Zhu, and Y. Yang, Nat. Photonics 6, 153 (2012).

    Article  Google Scholar 

  5. L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, Nat. Photonics 6, 180 (2012).

    Article  Google Scholar 

  6. Y. M. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan, and A. J. Heeger, Nat. Mater. 11, 44 (2012).

    Article  Google Scholar 

  7. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Prog. Photovoltaics 21, 1 (2013).

    Article  Google Scholar 

  8. K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganas, and J. V. Manca, Nat. Mater. 8, 904 (2009).

    Article  Google Scholar 

  9. Y. B. Yuan, T. J. Reece, P. Sharma, S. Poddar, S. Ducharme, A. Gruverman, Y. Yang, and J. S. Huang, Nat. Mater. 10, 296 (2011).

    Article  Google Scholar 

  10. D. Veldman, S. C. J. Meskers, and R. A. J. Janssen, Adv. Funct. Mater. 19, 1939 (2009).

    Article  Google Scholar 

  11. M. Graetzel, R. A. J. Janssen, D. B. Mitzi, and E. H. Sargent, Nature 488, 304 (2012).

    Article  Google Scholar 

  12. L. J. Pegg and R. A. Hatton, ACS Nano 6, 4722 (2012).

    Article  Google Scholar 

  13. Y. H. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Bredas, S. R. Marder, A. Kahn, and B. Kippelen, Science 336, 327 (2012).

    Article  Google Scholar 

  14. Y. B. Yuan, P. Sharma, Z. G. Xiao, S. Poddar, A. Gruverman, S. Ducharme, and J. S. Huang, Energy Environ. Sci. 5, 8558 (2012).

    Article  Google Scholar 

  15. D. Yokoyama, H. Sasabe, Y. Furukawa, C. Adachi, and J. Kido, Adv. Funct. Mater. 21, 1375 (2011).

    Article  Google Scholar 

  16. D. G. Johnson, M. P. Niemczyk, D. W. Minsek, G. P. Wiederrecht, W. A. Svec, G. L. Gaines, and M. R. Wasielewski, J. Am. Chem. Soc. 115, 5692 (1993).

    Article  Google Scholar 

  17. Z. C. Wang, C. J. Medforth, and J. A. Shelnutt, J. Am. Chem. Soc. 126, 15954 (2004).

    Article  Google Scholar 

  18. H. Hoppe and N. S. Sariciftci, J. Mater. Chem. 16, 45 (2006).

    Article  Google Scholar 

  19. S.-G. Chen, P. Stradins, and B. A. Gregg, J. Phys. Chem. B 109, 13451 (2005).

    Article  Google Scholar 

  20. G. M. Kim, I. S. Oh, A. N. Lee, and S. Y. Oh, J. Mater. Chem. A 2, 10131 (2014).

    Article  Google Scholar 

  21. H. Sasabe, D. Tanaka, D. Yokoyama, T. Chiba, Y.-J. Pu, K.-I. Nakayama, M. Yokoyama, and J. Kido, Adv. Funct. Mater. 21, 336 (2011).

    Article  Google Scholar 

  22. D. Yokoyama, J. Mater. Chem. 21, 19187 (2011).

    Article  Google Scholar 

  23. Z. C. He, C. M. Zhong, X. Huang, W. Y. Wong, H. B. Wu, L. W. Chen, S. J. Su, and Y. Cao, Adv. Mater. 23, 4636 (2011).

    Article  Google Scholar 

  24. H. Zhou, Y. Zhang, J. Seifter, S. D. Collins, C. Luo, G. C. Bazan, T. Q. Nguyen, and A. J. Heeger, Adv. Mater. 25, 1646 (2013).

    Article  Google Scholar 

  25. Z. Xu, L.-M. Chen, M.-H. Chen, G. Li, and Y. Yang, Appl. Phys. Lett. 95, 013301 (2009).

    Article  Google Scholar 

  26. B. Ecker, J. C. Nolasco, J. Pallares, L. F. Marsal, J. Posdorfer, J. Parisi, and E. von Hauff, Adv. Funct. Mater. 21, 2705 (2011).

    Article  Google Scholar 

  27. J. Bisquert, F. Fabregat-Santiago, I. Mora-Sero, G. Garcia-Belmonte, and S. Gimenez, J. Phys. Chem. C 113, 17278 (2009).

    Article  Google Scholar 

  28. B. J. Leever, C. A. Bailey, T. J. Marks, M. C. Hersam, and M. F. Durstock, Adv. Energy Mater. 2, 120 (2012).

    Article  Google Scholar 

  29. S. Ochiai, P. Kumar, K. Santhakumar, and P.-K. Shin, Electron. Mater. Lett. 9, 399 (2013).

    Article  Google Scholar 

  30. I. S. Oh, G. M. Kim, S. H. Han, and S. Y. Oh, Electron. Mater. Lett. 9, 375 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Se-Young Oh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, CH., Oh, IS. & Oh, SY. Improving the performance of organic solar cells using an electron transport layer of B4PyMPM self-assembled nanostructures. Electron. Mater. Lett. 11, 795–800 (2015). https://doi.org/10.1007/s13391-015-4503-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-015-4503-5

Keywords

Navigation