Skip to main content
Log in

Improved work function of preferentially oriented indium oxide films induced by the plasma exposure technique

  • Review Paper
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The preferentially oriented In2O3 thin films were prepared on glass substrates by conventional magnetron sputtering with Ar+ plasma exposure at room temperature. Based on the x-ray diffraction, x-ray photoelectron spectroscopy, and UV photoelectron spectroscopy results, it was found that the Ar+ plasma exposure not only enhanced the low-temperature crystallization of In2O3 thin films, but also led to a dramatic improvement in the work function. Furthermore, it demonstrated that the shift mechanism of the work function in In2O3 thin films mainly combined with theelimination of oxygen defects and the change of the preferential orientation of In2O3 film surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. S. Ginley and C. Bright, MRS Bull. 25, 15 (2000).

    Article  Google Scholar 

  2. C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, Adv. Funct. Mater. 11, 152001 (2000).

    Google Scholar 

  3. Z. C. He, C. M. Zhong, S. J. Su, X. Miao, H. B. Wu, and Y. Cao, Nat. Photon. 6, 591 (2012).

    Google Scholar 

  4. R. I. R. Blyth, R. Duschek, G. Koller, F. P. Netzer, and M. G. Ramsey, J. Appl. Phys. 90, 270 (2001).

    Article  Google Scholar 

  5. S. Braun, W. R. Salaneck, and M. Fahlman, Adv. Mater. 21, 1450 (2009).

    Article  Google Scholar 

  6. A. Klein, Appl. Phys. Lett. 77, 2009 (2000).

    Article  Google Scholar 

  7. O. Bierwagen, J. S. Speck, T. Nagata, T. Chikyow, Y. Yamashita, H. Yoshikawa, and K. Kobayashi, Appl. Phys. Lett. 98, 172101 (2011).

    Article  Google Scholar 

  8. G. Eranna, B. C. Joshi, D. P. Runthala, and R. P. Gupta, Crit. Rev. Solid State Mater. Sci. 29, 111 (2004).

    Article  Google Scholar 

  9. L. Wang, M. H. Yoon, A. Facchetti, and T. J. Marks, Adv. Mater. 19, 3252 (2007).

    Article  Google Scholar 

  10. M. Z. Atashbar, B. Gong, H. T. Sun, W. Wlodarski, and R. Lamb, Thin Solid Films 354, 222 (1999).

    Article  Google Scholar 

  11. H. Yamaura, T. Jinkawa, J. Tamaki, K. Moriya, N. Miur, and N. Yamazoe, Sens. Actuator B-Chem. 36, 352 (1996).

    Article  Google Scholar 

  12. N. Singh, R. K. Gupta, and P. S. Lee, ACS Appl. Mater. Interfaces 3, 246 (2011).

    Google Scholar 

  13. M. Ivanovskaya, A. Gurlo, and P. Bogdanov, Sens. Actuator B-Chem. 77, 264 (2001).

    Article  Google Scholar 

  14. T. Koida and M. Kondo, J. Appl. Phys. 99, 123703 (2006).

    Article  Google Scholar 

  15. O. Bierwagen, Semicond. Sci. Technol. 30, 034001 (2015).

    Article  Google Scholar 

  16. J. W. Hennek, M. G. Kim, and M. G. Kanatzidis, J. Am. Chem. Soc. 134, 9593 (2012).

    Article  Google Scholar 

  17. B. G. Lewis and D. C. Paine, MRS Bull. 25, 22 (2000).

    Article  Google Scholar 

  18. S. Z. Karazhanov, P. Ravindran, P. Vajeeston, A. Ulyashin, T. G. Finstad, and H. Fjellväg, Phys. Rev. B 76, 075129 (2007).

    Article  Google Scholar 

  19. P. D. C. King, D. J. Payne, A. Bourlange, R. G. Egdell, and C. F. Mcconville, Phys. Rev. Lett. 101, 116808 (2008).

    Article  Google Scholar 

  20. S. P. Harvey, T. O. Mason, C. Korber, Y. Gassenbauer, and A. Klein, Appl. Phys. Lett. 92, 252106 (2008).

    Article  Google Scholar 

  21. L. He, Z. H. Wu, Z. B. Li, J. Q. Ju, Q. R. Ou, and R. Q. Liang, J. Phys. D: Appl. Phys. 46, 175306 (2013).

    Article  Google Scholar 

  22. M. G. Helander, Z. B. Wang, J. Qiu, M. T. Greiner, D. P. Puzzo, Z. W. Liu, and Z. H. Lu, Science 332, 944 (2011).

    Article  Google Scholar 

  23. Y. J. Lin, Y. M. Chen, and Y. C. Wang, J. Appl. Phys. 97, 083702 (2005).

    Article  Google Scholar 

  24. T. M. Brown, G. M. Lazzerini, L. J. Parrott, V. Bodrozic, L. Burgi, and F. Cacialli, Org. Electron. 12, 623 (2011).

    Article  Google Scholar 

  25. Y. Gassenbauer and A. Klein, Solid State Ionics 173, 141 (2004).

    Article  Google Scholar 

  26. W. Ranke, Phys. Rev. B 27, 7807 (1983).

    Article  Google Scholar 

  27. A. Klein, C. Körber, A. Wachau, F. Säuberlich, Y. Gassenbauer, and R. Schafranek, Thin Solid Films 518, 1197 (2009).

    Article  Google Scholar 

  28. A. Walsh and R. A. Catlow, J. Mater. Chem. 20, 10438 (2010).

    Article  Google Scholar 

  29. X. P. Zhang, J. Q. Zhu, L. X. Zhang, J. C. Han, and S. Y. Du, J. Non-Cryst. Solids 362, 34 (2013).

    Article  Google Scholar 

  30. L. Yang, J. Q. Zhu, J. Bai, Y. K. Zhu, B. Dai, H. L. Yu, Z. Y. Jia, and J. C. Han, J. Mater. Sci. 49, 5955 (2014).

    Article  Google Scholar 

  31. H. A. Atwater, C. V. Thompson, and H. L. Smith, J. Appl. Phys. 64, 2337 (1986).

    Article  Google Scholar 

  32. K. H. Moüller, Sur. Sci. 184, L375 (1987).

    Article  Google Scholar 

  33. A. Anders, Thin Solid Films 518, 4087 (2010).

    Article  Google Scholar 

  34. D. Manova, J. W. Gerlach, and S. Mändl, Materials 3, 4109 (2010).

    Article  Google Scholar 

  35. M. Kamei, Y. Shigesato, and S. Takaki, Thin Solid Films 259, 38 (1995).

    Article  Google Scholar 

  36. W. Song, S. K. So, and L. Cao, Appl. Phys. A 72, 361 (2001).

    Article  Google Scholar 

  37. R. W. Hewitt and N. Winograd, J. Appl. Phys. 51, 2620 (1980).

    Article  Google Scholar 

  38. S. P. Harvey, T. O. Mason, Y. Gassenbauer, R. Schafranek, and A. Klein, J. Phys. D: Appl. Phys. 39, 3959 (2006).

    Article  Google Scholar 

  39. J. C. C. Fan and J. B. Goodenough, J. Appl. Phys. 48, 3524 (1977)

    Article  Google Scholar 

  40. J. S. Kim, P. K. H. Ho, D. S. Thomas, R. H. Friend, F. Cacialli, G. H. Bao, and S. F. Y. Li Chem. Phys. Lett. 315, 307 (1999).

    Article  Google Scholar 

  41. V. Golovanov, M. A. Maki-Jaskari, T. T. Rantala, G. Korotcenkov, V. Brinzari, A. Cornet, and J. Morante, Sens. Actuator B-Chem. 106, 563 (2005).

    Article  Google Scholar 

  42. L. J. Meng, A. Macarico, and R. Martins, Vacuum 46, 673 (1994).

    Article  Google Scholar 

  43. B. Gonzalez and B. Gabriela, Materials 5, 818 (2012).

    Article  Google Scholar 

  44. A. Walsh, Appl. Phys. Lett. 98, 261910 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Hou or Jiaqi Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Guo, S., Yang, Q. et al. Improved work function of preferentially oriented indium oxide films induced by the plasma exposure technique. Electron. Mater. Lett. 11, 938–943 (2015). https://doi.org/10.1007/s13391-015-4342-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-015-4342-4

Keywords

Navigation