Skip to main content
Log in

Large area photonic flash soldering of thin chips on flex foils for flexible electronic systems: In situ temperature measurements and thermal modelling

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In this work photonic energy from a high power xenon flash lamp is used for soldering thin chips on polyimide and polyester foil substrates using standard Sn-Ag-Cu lead free alloys. The absorption of the xenon light pulse leads to rapid heating of components and tracks up to temperatures above the solder melting temperature, while the temperature in the organic foil substrates remains low. Due to its high transparency the temperature in the delicate polyester foil remains low enough to avoid damage and allows fast soldering with standard lead-free alloys. The technology is fast and could be applied in-line in roll-to-roll fabrication of flexible electronics. In situ temperature measurements were performed and compared to finite element model predictions of the temperature in the chip during and after application of the photonic pulse. The accuracy of the model is within 10°C for the tested samples, which allows it to be used in developing photonic flash soldering compatible circuit designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Amft and P. Lukowicz, IEEE Perv. Comput. 8, 8 (2009).

    Article  Google Scholar 

  2. J. Fjelstad, Flexible Circuit Technology, p. 146, BR Publishing Inc, Seaside (2011).

    Google Scholar 

  3. D. A. van den Ende, R. H. L. Kusters, A. Sridhar, J. van den Brand, M. Cauwe, and B. Vandecasteele, Proc. Smart Systems Integration Conference, p. 1, Amsterdam (2013).

    Google Scholar 

  4. K. Cherenack and L. van Pieterson, J. Appl. Phys. 112, 091301 (2012).

    Article  Google Scholar 

  5. B. S. Cook, Y. Fang, S. Kim, T. Le, W. B. Goodwin, K. H. Sandhage, and M. M. Tentzeris, Electron. Mater. Lett. 9, 669 (2013).

    Article  Google Scholar 

  6. T.-C. Huang, K. Fukuda, C.-M. Lo, Y.-H. Yeh, T. Sekitani, T. Someya, and K.-T. Cheng, IEEE Trans. Electron. Dev. 58, 141 (2011).

    Article  Google Scholar 

  7. K. Y. Chen, R. L. D. Zenner, M. Arneson, and D. Mountain, IEEE Trans. Adv. Packaging 23, 22 (2000).

    Article  Google Scholar 

  8. J. Govaerts, W. Christiaens, E. Bosman, and J. Vanfleteren, IEEE Trans. Adv. Packaging 32, 77 (2009).

    Article  Google Scholar 

  9. C. Banda, R. Wayne Johnson, T. Zhang, Z. Hou, and H. K. Charles, IEEE Trans. Electron. Packag. Manuf. 31, 1 (2008).

    Article  Google Scholar 

  10. W. Yang, R. W. Messler, Jr., and L. E. Felton, J. Electron. Mater. 23, 765 (1994).

    Article  Google Scholar 

  11. J. Perelaer, R. Abbel, S. Wünscher, R. Jani, T. van Lammeren, and U. S. Schubert, Adv. Mater. 24, 2620 (2012).

    Article  Google Scholar 

  12. R. Abbel, T. van Lammeren, R. Hendriks, J. Ploegmakers, E. J. Rubingh, E. R. Meinders, and W. A. Groen, MRS Communications 2, 145 (2012).

    Article  Google Scholar 

  13. Technical Data Sheet, HF200, http://www.henkel.com (2011).

    Google Scholar 

  14. J. M. Palmer, The Measurements of Transmission, Absorption, Emission and Reflection, Handbook of Optics, McGraw Hill, New York (1995).

    Google Scholar 

  15. G. H. Pettit and R. Sauerbrey, Appl. Phys. Lett. 58, 793 (1991).

    Article  Google Scholar 

  16. M. A. Green, Sol. Energ. Mat. Sol. C. 92, 1305 (2008).

    Article  Google Scholar 

  17. P. E. Schmidt, Phys. Rev. B 23, 5531 (1981).

    Article  Google Scholar 

  18. H. A. Weakliem and D. Redfield, J. Appl. Phys. 50, 1491 (1979).

    Article  Google Scholar 

  19. M. A. P. Pertijs and J. H. Huijsing, Precision Temperature Sensors in CMOS Technology, p. 14, Springer, Berlin (2006)

    Google Scholar 

  20. K. Kurabayashi, M. Asheghi, M. Touzelbaev, and K. E. Goodson, J. Microelectromech. Syst. 8, 180 (1999).

    Article  Google Scholar 

  21. M. E. Alam and M. Gupta, Electron. Mater. Lett. 10, 515 (2014).

    Article  Google Scholar 

  22. Y.-J. Choi, N.-H. Kwon, S.-H. Ha, K. Park, H.-B. Kim, and Y.-R. Cho, Electron. Mater. Lett. 5, 191 (2009).

    Article  Google Scholar 

  23. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, Wiley (2006).

    Book  Google Scholar 

  24. H. T. Russell, The Spice Diode Model, Rectifier Applications Handbook, SCILLC, Denver (2001).

    Google Scholar 

  25. A. S. Grove, Physics and Technology of Semiconductor Devices, p. 188, John Wiley & Sons, New York (1967).

    Google Scholar 

  26. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, p. 97, John Wiley & Sons, New York (2006).

    Book  Google Scholar 

  27. C. M. Snowden, Introduction to Semiconductor Device Modelling, p. 44, World Scientific Publishing Company, Singapore (1998).

    Book  Google Scholar 

  28. S. Mhiaoui, F. Sar, and J. G. Gasser, J. Non-Cryst. Sol. 353, 3628 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. A. Groen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van den Ende, D.A., Hendriks, R., Cauchois, R. et al. Large area photonic flash soldering of thin chips on flex foils for flexible electronic systems: In situ temperature measurements and thermal modelling. Electron. Mater. Lett. 10, 1175–1183 (2014). https://doi.org/10.1007/s13391-014-4222-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-014-4222-3

keywords

Navigation