Skip to main content
Log in

3-D perpendicular assembly of SWNTs for CMOS interconnects

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Due to their superior electrical properties such as high current density and ballistic transport, carbon nanotubes (CNT) are considered as a potential candidate for future very large scale integration (VLSI) interconnects. However, direct incorporation of CNTs into a complimentary metal oxide semiconductor (CMOS) architecture by the conventional chemical vapor deposition (CVD) growth method is problematic because it requires high temperatures that might damage insulators and doped semiconductors in the underlying CMOS circuits. In this paper, we present a directed assembly method to assemble aligned CNTs into pre-patterned vias perpendicular to the substrate. A dynamic electric field with a static offset is applied to provide the force needed for directing the SWNT assembly. It is also shown that by adjusting assembly parameters the density of the assembled CNTs can be significantly enhanced. This highly scalable directed assembly method is conducted at room temperature and pressure and is accomplished in a few minutes. I-V characterization of the assembled CNTs was conducted using a Zyvex nanomanipulator in a scanning electron microscope (SEM) and the measured value of the resistance was 270 kΩs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Banerjee and N. Srivastava, Proc. of the 43rd Annual Design Automation Conference, p. 809, ACM, San Francisco, USA (2006).

    Book  Google Scholar 

  2. P. Avouris, J. Appenzeller, R. Martel, and S. J. Wind, Proc. IEEE 91, 1772 (2003).

    Article  CAS  Google Scholar 

  3. A. P. Graham, G. S. Duesberg, W. Hoenlein, F. Kreupl, M. Liebau, R. Martin, B. Rajasekharan, W. Pamler, R. Seidel, W. Steinhoegl, and E. Unger, Appl. Phys. A 80, 1141 (2005).

    Article  CAS  Google Scholar 

  4. International Technology Roadmap for Semiconductors (2012). http://itrs.net

  5. M. Nihei, A. Kawabata, D. Kondo, M. Horibe, S. Sato, and Y. Awano, Jpn. J. Appl. Phys. 44, 1626 (2005).

    Article  CAS  Google Scholar 

  6. J. Li, Q. Ye, A. Cassell, H. T. Ng, R. Stevens, J. Han, and M. Meyyappan, Appl. Phys. Lett. 82, 2491 (2003).

    Article  CAS  Google Scholar 

  7. D. S. Bethune, C. H. Klang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, Nature 363, 605 (1993).

    Google Scholar 

  8. J. Kong, H. T. Soh, A. M. Cassel, C. R. Quate, and H. Dai, Nature 395, 878 (1998).

    Google Scholar 

  9. N. Sinha, J. Ma, and J. T. W. Yeow, JNN 6, 573 (2006).

    Article  CAS  Google Scholar 

  10. W. Zhao, M. J. Lee, H. T. Kim, and I. J. Kim, Electron. Mater. Lett. 7, 139 (2011).

    Article  Google Scholar 

  11. S.-H. Lee and G.-H. Jeong, Electron. Mater. Lett. 8, 5 (2012).

    Article  CAS  Google Scholar 

  12. K. Yamamoto, S. Akita, and Y. Nakayama, J. Phys D 31, L34 (1998).

    Article  CAS  Google Scholar 

  13. D. P. Long, J. L. Lazorcik, and R. Shashidhar, Adv. Mater. 16, 81 (2004).

    Article  Google Scholar 

  14. S. G. Rao, L. Huang, W. Setyawan, and S. Hong, Nature 425, 36 (2003).

    Article  CAS  Google Scholar 

  15. P. Makaram, S. Somu, X. Xiong, A. Busnaina, Y. J. Jung, and N. McGruer, Appl. Phys. Lett. 90, 243108 (2007).

    Article  Google Scholar 

  16. J. Chung, K. H. Lee, J. Lee, and R. S. Ruoff, Langmuir 20, 3011 (2004).

    Article  CAS  Google Scholar 

  17. P. G. Collins, M. S. Arnold, and P. Avouris, Science 292, 706 (2001).

    Article  CAS  Google Scholar 

  18. J. Suehiro, G. Zhou, and M. Hara, J. Phys. D 36, L109 (2003).

    Article  CAS  Google Scholar 

  19. J. Chung, K. H. Lee, J. Lee, and R. S. Ruoff, Langmuir 20, 3011 (2004).

    Article  CAS  Google Scholar 

  20. P. Makaram, S. Selvarasah, X. Xiong, C.-L. Chen, A. Busnaina, N. Khanduja, and M. R. Dokmeci, Nanotechnology, 18, 395204 (2007).

    Article  Google Scholar 

  21. E. Gultepe, D. Nagesha, B. D. Frederic Casse, S. Selvarasah, A. Busnaina, and S. Sridhar, Nanotechnology 19, 455309 (2008).

    Article  Google Scholar 

  22. M. Dimaki and P. Boggild, Nanotechnology 15, 1905 (2004).

    Article  Google Scholar 

  23. L. X. Benedict, S. G. Louie, and M. L. Cohen, Phys. Rev. B 52, 8541 (1995).

    Article  CAS  Google Scholar 

  24. D. F. Chen, W. H. Li, H. Du, and M. Li, JNN 12 3035 (2012).

    Article  CAS  Google Scholar 

  25. S. Selvarasah, A. Busnaina, and M. R. Dokmeci, IEEE Trans. Nanotech. 10, 13 (2011).

    Article  Google Scholar 

  26. K.Y. Ang, K. Yao, Y. Chen, and S. L. Teo, JNN 9, 6523 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Busnaina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, TH., Yilmaz, C., Somu, S. et al. 3-D perpendicular assembly of SWNTs for CMOS interconnects. Electron. Mater. Lett. 9, 763–766 (2013). https://doi.org/10.1007/s13391-013-6006-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-013-6006-6

Keywords

Navigation