Skip to main content
Log in

Spray-deposited nanocrystalline WO3 thin films prepared using tungsten hexachloride dissolved in N-N dimethylformamide and influence of in doping on their structural, optical and electrical properties

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Undoped and In-doped nanocrystalline tungsten oxide (WO3) thin films were prepared by chemical spray pyrolysis using tungsten hexachloride (WCl6) dissolved in N-N dimethylformamide as the host precursor solution and indium chloride (InCl3) as the source of dopant. XRD analyses confirm the monoclinic phase of the prepared films with the predominance of triplet (002), (020) and (200) in the spectra. On indium doping, the crystallinity of the films decreases and becomes minimum at 1.5 at. % doping. EDX analyses confirm the incorporation of In dopants into the WO3 lattice network. SEM micrographs show nonspherical grains over the surface and the average grain size decreases with higher In doping. AFM images of the films exhibit large nicely separated conical columnar grains (except in 1 at. %) throughout the surface with coalescence of some columnar grains at few places. UV-visible measurements reveal that the optical transmittance of the 1 at. % In-doped film increases significantly throughout the wavelength range 300–800 nm relative to that of the undoped film. Room temperature photoluminescence spectra show pronounced enhancement in the peak intensity of NBE emission on In doping. Electrical conductivity has been found to increase on In doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Kovendhan, D. P. Joseph, E. S. Kumar, A. Sendilkumar, P. Manimuthu, S. Sambasivam, C. Venkateswaran, and R. Mohan, Appl. Surf. Sci. 257, 8127 (2011).

    Article  Google Scholar 

  2. S. Vallejos, V. Khatko, K. Aguir, K.A. Ngo, J. Calderer, I. Gràcia, C. Cané, E. Llobet, and X. Correig, Sens. Actuators, B 126, 573 (2007).

    Article  Google Scholar 

  3. N. D. Baydoğan, E. Ö. Zayim, and A. B. Tuğru, Nucl. Instrum. Methods Phys. Res., Sect. B 264, 302 (2007).

    Article  Google Scholar 

  4. N. Li, T. Stubhan, N. A. Luechinger, S. C. Halim, G. J. Matt, T. Ameri, and C. J. Brabec, Org. Electron. 13, 2479 (2012).

    Article  Google Scholar 

  5. L. Yang, D. Ge, J. Zhao, Y. Ding, X. Kong, and Y. Li, Sol. Energy Mater. Sol. Cells 100, 251 (2012).

    Article  Google Scholar 

  6. S. Dabbous, T. B. Nasrallah, J. Ouerfelli, K. Boubaker, M. Amlouk, and S. Belgacem, J. Alloys Compd. 487, 286 (2009).

    Article  Google Scholar 

  7. R. Sivakumar, A. M. E. Raj, B. Subramanian, M. Jayachandran, D. C. Trivedi, and C. Sanjeeviraja, Mater. Res. Bull. 39, 1479 (2004).

    Article  Google Scholar 

  8. S. Songara, V. Gupta, M. K. Patra, J. Singh, L. Saini, G.S. Gowd, S. R. Vadera, and N. Kumar, J. Phys. Chem. Solids 73, 851 (2012).

    Article  Google Scholar 

  9. M. Ranjbar, S. Fardindoost, S. M. Mahdavi, A. Irajizad, and N. Tahmasebi, Sol. Energy Mater. Sol. Cells 95, 2335 (2011).

    Article  Google Scholar 

  10. Q. Chen, J. Li, B. Zhou, M. Long, H. Chen, Y. Liu, W. Cai, and W. Shangguan, Electrochem. Commun. 20, 153 (2012).

    Article  Google Scholar 

  11. A. Stepanovich, K. Sliozberg, W. Schuhmann, and A. Ludwig, Int. J. Hydrogen Energy 37, 11618 (2012).

    Article  Google Scholar 

  12. C. W. Lai and S. Sreekantan, Mater. Sci. Semicond. Process. 16, 303 (2013).

    Article  Google Scholar 

  13. X. He, J. Li, X. Gao, and L. Wang, Sens. Actuators B 93 463 (2003).

    Article  Google Scholar 

  14. C. G. Granqvist, Sol. Energy Mater. Sol. Cells 60, 201 (2000).

    Article  Google Scholar 

  15. S. R. Bathe and P. S. Patil, Sol. Energy Mater. Sol. Cells 91, 1097 (2007).

    Article  Google Scholar 

  16. H. Yang, F. Shang, L. Gao, and H. Han, Appl. Surf. Sci 253, 5553 (2007).

    Article  Google Scholar 

  17. M. Deepa, A. K. Srivastava, T. K. Saxena, and S. A. Agnihotry, Appl. Surf. Sci 252, 1568 (2005).

    Article  Google Scholar 

  18. J. Garcia-Canadas, I. Mora-Sero, F. Fabregat-Santiago, J. Bisquert, and G. Garcia-Belmonte, J. Electroanal. Chem. 565, 329 (2004).

    Article  Google Scholar 

  19. M. Deepa, P. Singh, S. N. Sharma, and S. A. Agnihotry, Sol. Energy Mater. Sol. Cells 90, 2665 (2006).

    Article  Google Scholar 

  20. A. H. Jayatissa, S. T. Cheng, and T. Gupta, Mater. Sci. Eng. B 109, 269 (2004).

    Article  Google Scholar 

  21. C. H. Hsu, C. C. Chang, C. M. Tseng, C. C. Chan, W. H. Chao, Y. R. Wu, M. H. Wen, Y. T. Hsieh, Y. C. Wang, C. L. Chen, M. J. Wang, and M. K. Wu, Sens. Actuators, B 186, 193 (2013).

    Article  Google Scholar 

  22. M. H. Yaacob, M. Z. Ahmad, A. Z. Sadek, J. Z. Ou, J. Campbell, K. K. zadeh, and W. Wlodarski, Sens. Actuators, B 177, 981 (2012).

    Article  Google Scholar 

  23. T. Tesfamichael, A. Ponzoni, M. Ahsan, and G. Faglia, Sens. Actuators, B 168, 345 (2012).

    Article  Google Scholar 

  24. S. K. Biswas and J. O. Baeg, Int. J. Hydrogen Energy 38, 3177 (2013).

    Article  Google Scholar 

  25. J. M. Ortega, A. I. Martinez, D. R. Acosta, and C. R. Magana, Sol. Energy Mater. Sol. Cells 90, 2471 (2006).

    Article  Google Scholar 

  26. T. Tesfamichael, M. Arita, T. Bostrom, and J. Bell, Thin Solid Films 518, 4791 (2010).

    Article  Google Scholar 

  27. J. Gaury, E. M. Kelder, E. Bychkov, and G. Biskos, Thin Solid Films 534, 32 (2013).

    Article  Google Scholar 

  28. Y. Sun, C. J. Murphy, K. R. R. Gil, E. A. R. Garcia, J. M. Thornton, N. A. Morris, and D. Raftery, Int. J. Hydrogen Energy 34, 8476 (2009).

    Article  Google Scholar 

  29. J. Zhang, S. A. Wessel, and K. Colbow, Thin Solid Films 185, 265 (1990).

    Article  Google Scholar 

  30. A. S. Riad, S. A. Mahmoud, and A. A. Ibrahim, Physica B 296, 319 (2001).

    Article  Google Scholar 

  31. M. A. Wahab, Solid State Physics, (Second Edition), p. 32, Narosa Publishing House, New Delhi (2010).

    Google Scholar 

  32. C. S. Prajapati and P. P. Sahay, Appl. Surf. Sci. 258, 2823 (2012).

    Article  Google Scholar 

  33. A. Goswami, Thin Film Fundamentals, p. 420, New Age International, New Delhi (2005).

    Google Scholar 

  34. H. Kamal, E. K. Elmaghraby, S. A. Ali, and K. A. Hady, J. Cryst. Growth 262, 424 (2004).

    Article  Google Scholar 

  35. D. P. Joseph, M. Saravanan, B. Muthuraaman, P. Renugambal, S. Sambasivam, S. P. Raja, P. Maruthamuthu, and C. Venkateswaran, Nanotechnol. 19, 485707 (2008).

    Article  Google Scholar 

  36. A. Subrahmanyam and A. Karuppasamy, Sol. Energy Mater. Sol. Cells 91, 266 (2007).

    Article  Google Scholar 

  37. F. Urbach, Phys. Rev. 92, 1324 (1953).

    Article  Google Scholar 

  38. Y. M. Zhao, W. B. Hu, Y. D. Xia, E. F. Smith, Y. Q. Zhu, C. W. Dunnill, and D. H. Gregory, J. Mater. Chem. 17, 4436 (2007).

    Article  Google Scholar 

  39. M. Feng, A. L. Pan, H. R. Zhang, Z. A. Li, F. Liu, H. W. Liu, D. X. Shi, B. S. Zou, and H. J. Gao, Appl. Phys. Lett. 86, 141901 (2005).

    Article  Google Scholar 

  40. K. Lee, W. S. Seo, and J. T. Park, J. Am. Chem. Soc. 125, 3408 (2003).

    Article  Google Scholar 

  41. B. Zhang, C. Cao, H. Qui, Y. Xu, Y. Wang, and H. Zhu, Chem. Lett. 34, 154 (2005).

    Article  Google Scholar 

  42. S. Rajagopal, D. Nataraj, D. Mangalaraj, Y. Djaoued, J. Robichaud, and O. Y. Khyzhun, Nanoscale Res. Lett. 4, 1335 (2009).

    Article  Google Scholar 

  43. Y. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Zhu, and T. Yao, J. Appl. Phys. 84, 3912 (1998).

    Article  Google Scholar 

  44. C. S. Prajapati, A. Kushwaha, and P. P. Sahay, Mater. Res. Bull. 48, 2687 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Sahay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukherjee, R., Kushwaha, A. & Sahay, P.P. Spray-deposited nanocrystalline WO3 thin films prepared using tungsten hexachloride dissolved in N-N dimethylformamide and influence of in doping on their structural, optical and electrical properties. Electron. Mater. Lett. 10, 401–410 (2014). https://doi.org/10.1007/s13391-013-3221-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-013-3221-0

Keywords

Navigation