Skip to main content
Log in

Structure and electrochemical behavior of LiMnBO3 synthesized at various temperatures

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

LiMnBO3 is synthesized via solid state reaction at various calcination temperatures, in order to investigate their lithium electrochemical behavior for Li-ion batteries. At lower calcination temperature, LiMnBO3 is composed of mostly monoclinic phase, with a small amount of hexagonal phase, but the ratio of hexagonal/monoclinic phase increases with an increase of calcination temperature, resulting in almost pure hexagonal phase at 800°C. Generally, monoclinic/hexagonal mixed phased LiMnBO3 displays better lithium electrochemical performance. While the pristine LiMnBO3 shows very low capacity, carbon-incorporated LiMnBO3 shows hugely improved charge-discharge capacity, in all samples. The maximum capacity, 108.2 mAh/g after 50 cycles, is obtained from LiMnBO3/C composite calcined at 600°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. B. Goodenough and Y. Kim, Chem. Mater. 22, 5872 (2010).

    Article  Google Scholar 

  2. T. B. Reddy, Linden’s Handbook of Batteries, Fourth ed., McGraw Hill, New York (2011).

    Google Scholar 

  3. A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, J. Electrochem. Soc. 144, 1188 (1997).

    Article  Google Scholar 

  4. H. Song, K. T. Lee, M. G. Kim, L. F. Nazar, and J. Cho, Adv. Funct. Mater. 20, 3818 (2010).

    Article  Google Scholar 

  5. R. Mukherjee, R. Krishnan, T.-M. Lu, and N. Koratkar, Nano Energy 1, 518 (2012).

    Article  Google Scholar 

  6. B. L. Ellis, K. T. Lee, and L. F. Nazar, Chem. Mater. 22, 691 (2010).

    Article  Google Scholar 

  7. Y. Oh, S. Nam, S. Wi, S. Hong, and B. Park, Electron. Mater. Lett. 8, 91 (2012).

    Article  Google Scholar 

  8. M.-S. Yoon, M. Islam, Y. M. Park, and S.-C. Ur, Electron. Mater. Lett. 9, 187 (2013).

    Article  Google Scholar 

  9. R. Dominko, J. Power Sources 184, 462 (2008).

    Article  Google Scholar 

  10. T. Muraliganth, K. R. Stroukoff, and A. Manthiram, Chem. Mater. 22, 5754 (2010).

    Article  Google Scholar 

  11. V. Legagneur, Y. An, A. Mosbah, R. Portal, A. Le Gal La Salle, A. Verbaere, D. Guyomard, and Y. Piffard, Solid State Ionics 139, 37 (2001).

    Article  Google Scholar 

  12. A. Yamada, N. Iwane, Y. Harada, S. Nishimura, Y. Koyama, and I. Tanaka, Adv. Mater. 22, 3583 (2010).

    Article  Google Scholar 

  13. L. Chen, Y. Zhao, X. An, J. Liu, Y. Dong, Y. Chen, and Q. Kuang, J. Alloy. Compd. 494, 415 (2010).

    Article  Google Scholar 

  14. Y. Z. Dong, Y. M. Zhao, Z. D. Shi, X. N. An, P. Fua, and L. Chen, Electrochim. Acta 53, 2339 (2008).

    Article  Google Scholar 

  15. J. C. Kim, C. J. Moore, B. Kang, G. Hautier, A. Jain, and G. Ceder, J. Electrochem. Soc. 158, A309 (2011).

    Article  Google Scholar 

  16. S. Afyon, D. Kundu, F. Krumeich, and R. Nesper, J. Power Sources 224, 145 (2013).

    Article  Google Scholar 

  17. O. S. Bondareva, M. A. Simonov, Y. K. Egorovtismenko, and N. V. Belov, Sov. Phys. Crystallogr. 23, 269 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyukjae Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, YS., Lee, H. Structure and electrochemical behavior of LiMnBO3 synthesized at various temperatures. Electron. Mater. Lett. 10, 253–258 (2014). https://doi.org/10.1007/s13391-013-3170-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-013-3170-7

Keywords

Navigation