Skip to main content
Log in

Investigation of zinc-tin-oxide thin-film transistors with varying SnO2 contents

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Zinc tin oxide (ZTO) thin-film transistors (TFTs) were prepared on a glass substrate by deposition using radio frequency (RF) magnetron co-sputtering, followed by annealing at 300°C for 20 min. The properties of ZTO thin films were found to be dependent on the atomic compositional ratio of Zn:Sn; the device performance and operational stability of the fabricated ZTO TFTs, including the mobility, on-off current ratio, threshold voltage, and subthreshold slope, were strongly influenced by the Sn content. Better TFT performance was achieved when the Sn content in the ZTO thin film was low, and the optimal mobility was 18 cm2 V−1 s−1, threshold voltage was 0.5 V, and subthreshold slope was 0.227 V·dec−1. Notably, the device performance and operational stability of the RF magnetron co-sputtered ZTO TFTs could be improved by optimizing the Zn:Sn atomic compositional ratio in the films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. W. J. Prins, K. O. Grosse-Holz, G. Müller, J. F. M. Cillessen, J. B. Giesbers, R. P. Weening, and R. M. Wolf, Appl. Phys. Lett. 68, 3650 (1996).

    Article  Google Scholar 

  2. A. Ennaoui, M. Weber, R. Scheer, and H. J. Lewerenz, Sol. Energy Mater. Sol. Cells. 54, 277 (1998).

    Article  Google Scholar 

  3. Q. H. Li, T. Gao, Y. G. Wang, and T. H. Wang, Appl. Phys. Lett. 86, 123117-1 (2005).

    Google Scholar 

  4. M. Delvaux and S. D. Champagne, Biosens. Bioelectron. 8, 943 (2003).

    Article  Google Scholar 

  5. X. L. Zhu, I. Yuri, X. Gan, I. Suzuki, and G. X. Li, Biosens. Bioelectron. 22, 1600 (2007).

    Article  Google Scholar 

  6. F. F. Zhang, X. L. Wang, S. Y. Ai, Z. D. Sun, Q. Wan, Z. Q. Zhu, Y. Z. Xian, L. T. Jin, and K. Yamamoto, Anal. Chim. Acta 519, 155 (2004).

    Article  Google Scholar 

  7. K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Science 300, 1269 (2003).

    Article  Google Scholar 

  8. R. L. Hoffman, B. J. Norris, and J. F. Wager, Appl. Phys. Lett. 82, 733 (2003).

    Article  Google Scholar 

  9. P. F. Carcia, R. S. McLean, M. H. Reilly, and G. Nunes, Appl. Phys. Lett. 82, 1117 (2003).

    Article  Google Scholar 

  10. R. E. Presley, C. L. Munsee, C. H. Park, D. Hong, J. F. Wager, and D. Keszler, J. Phys. D: Appl. Phys. 37, 2810 (2004).

    Article  Google Scholar 

  11. E. M. C. Fortunato, P. M. C. Barquinha, A. C. M. B. G Pimentel, A. M. F Gonçalves, A. J. S. Marques, L. M. N. Pereira, and R. F. P. Martins Adv. Mater. 17, 590 (2005).

    Article  Google Scholar 

  12. H. Hosono, N. Kikuchi, N. Ueda, and H. Kawazoe, J. Non-Cryst. Solids 165, 198 (1996).

    Google Scholar 

  13. H. Hosono, M. Yasukawa, and H. Kawazoe, J. Non-Cryst. Solids 203, 334 (1996).

    Article  Google Scholar 

  14. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432, 488 (2004).

    Article  Google Scholar 

  15. B. Yaglioglu, H.Y. Yeon, R. Beresford, and D. C. Paine, Appl. Phys. Lett. 89, 062103 (2006).

    Article  Google Scholar 

  16. M. S. Grover, P. A. Hersh, H. Q. Chiang, E. S. Kettenring, J. F. Wager, and D. A. Keszler, J. Phys. D, 40, 1335 (2007).

    Article  Google Scholar 

  17. H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler, Appl. Phys. Lett. 86, 013503 (2005).

    Article  Google Scholar 

  18. D. K. Schroder, Semiconductor Material and Device Characterization, p.465, New York, Wiley (1998).

    Google Scholar 

  19. G. E. Totten, S. R. Westbrook, and R. J. Shah, Fuels and Lubricants Handbook: Technology, Properties, Performance, and Testing, 1st ed. p.220, West Conshohocken, PA: ASTM International (2003).

    Book  Google Scholar 

  20. C. G. Lee, S. Dutta, and A. Dodabalapur, IEEE Electron Device Lett. 31, 1410 (2010).

    Article  Google Scholar 

  21. S. Jeong, Y. Jeong, and J. Moon, J. Phys. Chem. C, 112, 11082 (2008).

    Article  Google Scholar 

  22. Y. Jeong, K. Song, D. Kim, C. Y. Koo, and J. Moon, J. Electrochem. Soc., 156, H808 (2009).

    Article  Google Scholar 

  23. Y. H. Kim, J. I. Han, and S. K. Park, IEEE Electron Device Lett. 33, 50 (2012).

    Article  Google Scholar 

  24. P. Görrn, P. Hölzer, T. Riedl, W. Kowalsky, J. Wang, T. Weiman, P. Hinze, and S. Kipp, Appl. Phys. Lett. 90, 063502 (2007)

    Article  Google Scholar 

  25. S. J. Seo, C. G. Choi, Y. H. Hwang, and B. S. Bae, J. Phys. D: Appl. Phys. 42, 035106 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Po Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuo, PJ., Chang, SP. & Chang, SJ. Investigation of zinc-tin-oxide thin-film transistors with varying SnO2 contents. Electron. Mater. Lett. 10, 89–94 (2014). https://doi.org/10.1007/s13391-013-3112-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-013-3112-4

Keywords

Navigation