Skip to main content
Log in

Crystallization, sinterability and microwave dielectric properties of CaO-SiO2-Na2O-MgO glass ceramics containing Fe2O3 and ZnO

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

CaO-SiO2-Na2O-MgO glass-ceramics containing Fe2O3 and ZnO were prepared using conventional melting of batch powders, quenching the molten glass in water and crystallization of sintered glass powder. FTIR spectroscopy exhibited main peaks at 930 cm−1 and 950 cm−1 are the characterizations of [SiO4]−2 and [SiO4]−1 bands of glassy network, respectively. XRD patterns introduce Wollastonite and Akermanite as two main crystallized phases of sintered glass-ceramics. Fe2O3 additive resulted in crystallization of Wollastonite more than ZnO additive. Also glass ceramics containing Fe2O3 exhibited sinterability better than ZnO glass ceramics. Consequently, dielectric properties of glass ceramics were measured via a network analyzer at 9 GHz. The bulks of Glass Ceramics showed low dielectric constant and dielectric loss, ɛ r = 5.5 − 7.4 and tgδ = 0.001 − 0.009 respectively. SEM micrograph of glass ceramic samples and glasses depicted morphology of Wollastonite and phase separation respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. T. Sebastian, Dielectric Materials for Wireless Communication, p. 1, Elsevier, Oxford, UK (2008).

    Book  Google Scholar 

  2. Y. Imanaka, Multilayered Low Temperature Cofired Ceramics (LTCC) Technology, p. 42, Springer, Boston, USA (2005).

    Google Scholar 

  3. M. Nair, A. S. Bhlla, T. K. Gupta, S. L. Hirano, B. V. Hirenmath, J. H. Jean, R. Pohanka (Ed.), Dielectric Materials and Device, p. 492, The American Ceramic Society, The American Ceramic Society, Westwrville, USA (2002).

    Google Scholar 

  4. W. Höland and G. Beal, The American Ceramic Society, Westerville (2002).

    Google Scholar 

  5. A. Chrissanthopoulos, N. Bouropoulos, and S. N. Yannopoulos, Vib. Spectrosc. 48, 118 (2008).

    Article  Google Scholar 

  6. B. Volf Milos, Chemical Approach to Glass, p. 118, Elsevier, Amsterdam, Netherland (1984).

    Google Scholar 

  7. I. H. Jung, S. A. Decterov, and A. D. Pelton, J. Eur. Ceram. Soc. 25, 313 (2005).

    Article  Google Scholar 

  8. G. H. Chen and X. Y. Liu, J. Alloy. Compd. 431, 282 (2007).

    Article  Google Scholar 

  9. P. Alizadeh, M. Yusefi, B. Eftekhari Yekta, N. Ghafoorian, and F. Molaie, Ceram. Int. 33, 767 (2007).

    Article  Google Scholar 

  10. J. Kim, S. Hwang, W. Sung, and H. Kim, J. Electroceram. 23, 209 (2009).

    Article  Google Scholar 

  11. M. S. Jogad, Mater. Lett. 57, 619 (2002).

    Article  Google Scholar 

  12. A. J. Moulson, J. M. Herbert (Ed.), Electroceramics/Materials, Properties, Applications, p. 117, John Wiley & Sons Ltd, West Sussex, England (2003).

    Google Scholar 

  13. R. W. Rice, Porosity of Ceramic, p. 1, Marcel Dekker Inc, New York, USA (1998).

    Google Scholar 

  14. H. Wang, Q. Zhang, H. Yang, and H. Sun, Ceram. Int. 34, 1405 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kiani Zitani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiani Zitani, M., Rezvani, M. & Asadi Tabrizi, R. Crystallization, sinterability and microwave dielectric properties of CaO-SiO2-Na2O-MgO glass ceramics containing Fe2O3 and ZnO. Electron. Mater. Lett. 10, 131–137 (2014). https://doi.org/10.1007/s13391-013-3103-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-013-3103-5

Keywords

Navigation