Skip to main content
Log in

Correlated age-specific mortality model: an application to annuity portfolio management

  • Original Research Paper
  • Published:
European Actuarial Journal Aims and scope Submit manuscript

Abstract

This article models the dynamics of age-specific incremental mortality as a stochastic process in which the drift rate can be simply and effectively modeled as the average annual improvement rate of a group time trend for all ages and the distribution of residuals can be fitted by one of the Gaussian distribution and four non-Gaussian distributions (Student t, jump diffusion, variance gamma, and normal inverse Gaussian). We use the one-factor copula model with six distributions for the factors (normal–normal, normal–Student t, Student t–normal, Student t–Student t, skewed t–normal, and skewed t–Student t) to capture the inter-age mortality dependence. We then construct three annuity portfolios (Barbell, Ladder, and Bullet) with equal portfolio value (total net single premium) and portfolio mortality duration but different portfolio mortality convexities. Finally, we apply our model to managing longevity risk by an approximation to the change in the portfolio value in response to a proportional or constant change in the force of mortality, and by estimating Value at Risk for the three annuity portfolios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. That is, \(TNSP_{Bullet}=N_{x_1,\,Bullet}\cdot SB_{x_1,\,Bullet}\cdot a_{x_1,\,2013}+N_{x_2,\,Bullet}\cdot SB_{x_2,\,Bullet}\cdot a_{x_2,\,2013} =w_{x_1,\,Bullet}\cdot a_{x_1,\,2013}+w_{x_2,\,Bullet}\cdot a_{x_2,\,2013} =TNSP_{Ladder}\) and \(D^{\,\lambda }_{Bullet}=D^{\,\lambda }[w_{x_1,\,Bullet}\cdot a_{x_1,\,2013}+w_{x_2,\,Bullet}\cdot a_{x_2,\,2013}] =w_{x_1,\,Bullet}\cdot D^{\,\lambda }[a_{x_1,\,2013}]+w_{x_2,\,Bullet}\cdot D^{\,\lambda }[a_{x_2,\,2013}] =D^{\,\lambda }_{Ladder}\).

References

  1. Barndorff-Nielsen O (2014) Information and exponential families in statistical theory. Wiley, New York

    Book  MATH  Google Scholar 

  2. Biffis E (2005) Affine processes for dynamic mortality and actuarial valuations. Insur Math Econ 37:443–468

    Article  MathSciNet  MATH  Google Scholar 

  3. Blake D, Cairns AJG, Coughlan G, Dowd K, MacMinn R (2013) The new life market. J Risk Insur 80(3):501–558

    Article  Google Scholar 

  4. Cairns AJG, Blake D, Dowd K (2006) A two-factor model for stochastic mortality with parameter uncertainty: theory and calibration. J Risk Insur 73:687–718

    Article  Google Scholar 

  5. Chen H, Cox SH (2009) Modeling mortality with jumps: applications to mortality securitization. J Risk Insur 76:727–751

    Article  Google Scholar 

  6. Chen H, MacMinn RD, Sun T (2015) Multi-population mortality models: a factor copula approach. Insur Math Econ 63:135–146

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen H, MacMinn RD, Sun T (2017) Mortality dependence and longevity bond pricing: a dynamic factor copula mortality model with the GAS structure. J Risk Insur 84:393–415

    Article  Google Scholar 

  8. Cocco J, Gomes F (2012) Longevity risk, retirement savings, and financial innovation. J Financ Econ 103(3):507–529

    Article  Google Scholar 

  9. Cowling C, Dales R (2008) The FTSE 100 and their pension disclosures. Technical Report, Pension Capital Strategies

  10. Cox SH, Lin Y, Wang SS (2006) Multivariate exponential tilting and pricing implications for mortality securitization. J Risk Insur 73:719–736

    Article  Google Scholar 

  11. D’Amato V, Haberman S, Piscopo G, Russolillo M (2012) Modelling dependent data for longevity projections. Insur Math Econ 51:694–701

    Article  MathSciNet  MATH  Google Scholar 

  12. Embrechts P, Lindskog F, McNeil A (2003) Modeling dependence with copulas and applications to risk management. In: Rachev S (ed) Handbook of heavy tailed distributions in finance. Elsevier, North Holland, pp 329–384

    Chapter  Google Scholar 

  13. Finkelstein A, Poterba JM (2002) Selection effects in the United Kingdom individual annuities market. Econ J 112(476):28–50

    Article  Google Scholar 

  14. Giacometti R, Ortobelli S, Bertocchi MI (2009) Impact of different distributional assumptions in forecasting Italian mortality rates. Invest Manag Financ Innov 6:186–193

    Google Scholar 

  15. Hansen BE (1994) Autoregressive conditional density estimation. Int Econ Rev 35(3):705–730

    Article  MATH  Google Scholar 

  16. Jarque CM, Bera AK (1980) Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Econ Lett 6:255–259

    Article  MathSciNet  Google Scholar 

  17. Joe H (1997) Multivariate models and dependence concepts. In: Monographs in statistics and probability, vol. 73. Chapman and Hall, London

  18. Kuang D, Nielsen B, Nielsen JP (2008) Identification of the age-period-cohort model and the extended chain-ladder model. Biometrika 95:979–986

    Article  MathSciNet  MATH  Google Scholar 

  19. Kuang D, Nielsen B, Nielsen JP (2008) Forecasting with the age-period-cohort model and the extended chain-ladder model. Biometrika 95:987–991

    Article  MathSciNet  MATH  Google Scholar 

  20. Lee RD, Carter LR (1992) Modeling and forecasting U.S. mortality. J Am Stat Assoc 87:659–675

    MATH  Google Scholar 

  21. Lin Y, Cox SH (2005) Securitization of mortality risks in life annuities. J Risk Insur 72:227–252

    Article  Google Scholar 

  22. Lin T, Tsai CCL (2013) On the mortality/longevity risk hedging with mortality immunization. Insur Math Econ 53:580–596

    Article  MathSciNet  MATH  Google Scholar 

  23. Lin T, Tsai CCL (2016) Hedging mortality/longevity risks of insurance portfolios for life insurer/annuity provider and financial intermediary. Insur Math Econ 66:44–58

    Article  MathSciNet  MATH  Google Scholar 

  24. Lin T, Wang CW, Tsai CCL (2015) Age-specific copula-AR-GARCH mortality models. Insur Math Econ 61:110–124

    Article  MathSciNet  MATH  Google Scholar 

  25. Luo L (2013) Assessing validity and application scope of the intrinsic estimator approach to the age-period-cohort problem. Demography 50:1945–1967

    Article  Google Scholar 

  26. Madan DB, Seneta E (1987) Chebyshev polynomial approximations and characteristic function estimation. J R Stat Soc Ser B 49(2):163–169

    MathSciNet  Google Scholar 

  27. Madan DB, Seneta E (1990) The variance gamma (VG) model for share market returns. J Bus 63(4):511–524

    Article  Google Scholar 

  28. Menoncin F (2008) The role of longevity bonds in optimal portfolios. Insur Math Econ 42:343–358

    Article  MathSciNet  MATH  Google Scholar 

  29. Mitchell D, Brockett P, Mendoza-Arriaga R, Muthuraman K (2013) Modeling and forecasting mortality rates. Insur Math Econ 52:275–285

    Article  MathSciNet  MATH  Google Scholar 

  30. Mitchell OS, Poterba JM, Warshawsky MJ, Brown JR (1999) New evidence on the money’s worth of individual annuities. Am Econ Rev 89:1299–1318

    Article  Google Scholar 

  31. Nelsen RB (1999) An introduction to copulas. In: Lecture notes in statistics, vol 139. Springer, New York

  32. Oh DH, Patton AJ (2013) Simulated method of moments estimation for copula based multivariate models. J Am Stat Assoc 108(502):689–700

    Article  MathSciNet  MATH  Google Scholar 

  33. Oh DH, Patton AJ (2014) Modelling dependence in high dimensions with factor copulas. Working paper. Duke University

  34. Patton AJ (2006) Modeling asymmetric exchange rate dependence. Int Econ Rev 47:527–556

    Article  Google Scholar 

  35. Plat R (2009) On stochastic mortality modeling. Insur Math Econ 45:393–404

    Article  MathSciNet  MATH  Google Scholar 

  36. Renshaw AE, Haberman S (2006) A cohort-based extension to the Lee–Carter model for mortality reduction factors. Insur Math Econ 38:556–570

    Article  MATH  Google Scholar 

  37. Sklar A (1959) Fonctions de r\(\acute{{\rm e}}\)partition \(\grave{a}\) n dimensions et leurs marges. Publications de l’Institut de Statistique de L’Universit\(\acute{{\rm e}}\) de Paris 8:229–231

  38. Tsai CCL, Lin T (2017a) Incorporating the Bühlmann credibility into mortality models to improve forecasting performances. Scand Actuar J 5:419–440

    Article  MATH  Google Scholar 

  39. Tsai CCL, Lin T (2017b) A Bühlmann credibility approach to modeling mortality rates. N Am Actuar J 21(2):204–227

    Article  MathSciNet  MATH  Google Scholar 

  40. Tsai CCL, Yang S (2015) A linear regression approach modeling mortality rates of different forms. N Am Actuar J 19(1):1–13

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang CW, Huang HC, Liu IC (2011) A quantitative comparison of the Lee-Carter model under different types of non-Gaussian innovations. Geneva Papers on Risk and Insurance—Issues and Practice 36:675–696

    Article  Google Scholar 

  42. Wang CW, Huang HC, Liu IC (2013) Mortality modeling with non-Gaussian innovations and applications to the valuation of longevity swaps. J Risk Insur 80:775–797

    Article  Google Scholar 

  43. Wang CW, Yang SS, Huang HC (2015) Modelling multi-country mortality dependence and its application in pricing survivor index swaps—a dynamic copula approach. Insur Math Econ 63:30–39

    Article  MATH  Google Scholar 

  44. Warshawsky MJ (1988) Private annuity markets in the United States: 1919–1984. J Risk Insur 55:518–528

    Article  Google Scholar 

  45. Wong ST, Forster J, Smith WF (2018) Bayesian mortality forecasting with overdispersion. Insur Math Econ 83:206–221

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhu W, Tan KS, Wang CW (2017) Modeling multicountry longevity risk with mortality dependence: a L\(\acute{{\rm e}}\)vy subordinated hierarchical Archimedean copulas approach. J Risk Insur 84:477–493

    Article  Google Scholar 

Download references

Acknowledgement

The authors thank the referees for their valuable comments and suggestions. Support from the MOST (Minister of Science and Technology) of Taiwan and the NSERC (Natural Sciences and Engineering Research Council) of Canada is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cary Chi-Liang Tsai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Given \(\ln (m_{x,\,t})\) data in the age-year window \([x_L,\,x_U]\times [t_L,\,t_U]\), the non-parametric Bühlmann estimate \(\Delta \hat{Y}_{x,\,t_U+1}{\mathop {=}\limits ^{\bigtriangleup }} \ln (\hat{m}_{x,\,t_U+1})-\ln (m_{x,\,t_U})\) for age \(x=x_L,\ldots , x_U\) in year \(t_U+1\) is given by Tsai and Lin [39] as

$$\begin{aligned} \Delta \hat{Y}_{x,\,t_U+1}=Z\cdot \Delta \overline{Y}_x+(1-Z)\cdot \Delta \overline{Y}, \end{aligned}$$
(A.1)

where \(\Delta \overline{Y}_{x}=\frac{1}{n-1}\sum _{t=t_L+1}^{t_U}\Delta Y_{x,\,t}\) with \(n-1=t_U-t_L\) and \(\Delta Y_{x,\,t}{\mathop {=}\limits ^{\bigtriangleup }}\ln (m_{x,\,t})-\ln (m_{x,\,t-1})\), and \(\Delta \overline{Y}=\frac{1}{m}\sum _{x=x_L}^{x_U} \Delta \overline{Y}_x\) with \(m=x_U-x_L+1\). Then the non-parametric Bühlmann estimate of \(\ln (m_{x,\,t_U+1})\) for age x in year \(t_U+1\) is

$$\begin{aligned} \ln (\hat{m}_{x,\,t_U+1})=\ln (m_{x,\,t_U})+\Delta \hat{Y}_{x,\,t_U+1}. \end{aligned}$$
(A.2)

The estimate of the Bühlmann credibility factor Z is given as

$$\begin{aligned} \hat{Z}=\frac{(n-1)}{(n-1)+\hat{v}/\hat{a}}, \end{aligned}$$

where \(\hat{v}=\frac{1}{m}\sum _{x=x_L}^{x_U}\hat{v}_x\) with \(\hat{v}_{x}=\frac{1}{n-2}\sum _{t=t_L+1}^{t_U}(\Delta Y_{x,\,t}-\Delta \overline{Y}_{x})^2\), and \(\hat{a}=\frac{1}{m-1}\sum _{x=x_L}^{x_U} (\Delta \overline{Y}_x-\Delta \overline{Y})^2-\frac{\hat{v}}{n-1}\). Note that it is possible that \(\hat{a}\) could be negative due to a substraction. When that happens, it is customary to set \(\hat{a}=0\), implying \(\hat{Z}=0\).

The non-parametric Bühlmann credibility estimate \(\Delta \hat{Y}_{x,\,t_U+\tau }\) for year \(t_U+\tau \) (\(\tau \ge 1\)) is expressed by

$$\begin{aligned} \Delta \hat{Y}_{x,\,t_U+\tau }=Z(t_U+\tau )\cdot \Delta \overline{Y}_{x}(t_U+\tau ) +[1-Z(t_U+\tau )]\cdot \Delta \overline{Y}(t_U+\tau ), \end{aligned}$$
(A.3)

where \(Z(t_U+\tau )\), \(\Delta \overline{Y}_{x}(t_U+\tau )\) and \(\Delta \overline{Y}(t_U+\tau )\) are Z, \(\Delta \overline{Y}_{x}\) and \(\Delta \overline{Y}\) for year \(t_U+\tau \), respectively. Then the non-parametric Bühlmann credibility estimates of \(\ln (m_{x,\,t_U+\tau })\) for age x in year \(t_U+\tau \) is given by

$$\begin{aligned} \ln (\hat{m}_{x,\,t_U+\tau })=\ln (m_{x,\,t_U}) +\sum _{t=1}^{\tau }\Delta \hat{Y}_{x,\,t_U+t}. \end{aligned}$$
(A.4)

We adopt the expanding window strategy to determine \(\Delta \hat{Y}_{x,\,t_U+\tau }\) for \(\tau =2, 3,\ldots \). We first add the Bühlmann credibility estimate \(\Delta \hat{Y}_{x,\,t_U+1}\) to \(\{\Delta Y_{x,\,t_L+1},\ldots ,\Delta Y_{x,\,t_U}\}\) such that the initial year span is expanded by one year to \([t_L,\,t_U+1]\). Then we obtain

$$\begin{aligned} \Delta \overline{Y}_x(t_U+2)= & {} \frac{1}{n}\left[ \sum _{t=t_L+1}^{t_U}\Delta Y_{x,\,t}+\Delta \hat{Y}_{x,\,t_U+1}\right] ,\\ \Delta \overline{Y}(t_U+2)= & {} \frac{1}{m} \sum _{x=x_L}^{x_U}\Delta \overline{Y}_x(t_U+2) \end{aligned}$$

and

$$\begin{aligned} Z(t_U+2)=\frac{n}{n+\hat{v}/\hat{a}}. \end{aligned}$$

The non-parametric Bühlmann credibility estimate \(\Delta \hat{Y}_{x,\,t_U+2}\) is given by (A.3) with \(\tau =2\). Repeat the same procedure to get

$$\begin{aligned} \Delta \overline{Y}_x(t_U+\tau )= & {} \frac{1}{n+\tau -2}\left[ \sum _{t=t_L+1}^{t_U}\Delta Y_{x,\,t}+\sum _{t=t_U+1}^{t_U+\tau -1}\Delta \hat{Y}_{x,\,t}\right] ,\\ \Delta \overline{Y}(t_U+\tau )= & {} (1/m)\sum _{x=x_L}^{x_U}\Delta \overline{Y}_x(t_U+\tau ) \end{aligned}$$

and

$$\begin{aligned} Z(t_U+\tau )=\frac{n+\tau -2}{n+\tau -2+\hat{v}/\hat{a}} \end{aligned}$$

using the data in the year span \([t_L, t_U+\tau -1]\) for \(\Delta \hat{Y}_{x,\,t_U+\tau }, \tau =3, 4,\ldots \).

Tsai and Lin [39] prove that

$$\begin{aligned} \Delta \hat{Y}_{x,\,t_U+\tau }=\Delta \hat{Y}_{x,\,t_U+1} {\mathop {=}\limits ^{\bigtriangleup }}\hat{\theta }^B_{x} \end{aligned}$$
(A.5)

for \(\tau >1\) under the expanding window strategy. As a result, the non-parametric Bühlmann estimates of \(\ln (m_{x,\,t_U+\tau })\) for \(\tau \ge 1\) can be obtained from (A.4) as

$$\begin{aligned} \ln (\hat{m}_{x,\,t_U+\tau })=\ln (m_{x,\,t_U})+\tau \cdot \hat{\theta }^B_{x}. \end{aligned}$$
(A.6)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, T., Wang, CW. & Tsai, C.CL. Correlated age-specific mortality model: an application to annuity portfolio management. Eur. Actuar. J. 11, 413–440 (2021). https://doi.org/10.1007/s13385-021-00269-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13385-021-00269-y

Keywords

Navigation