Personal Best (PB) goal-setting enhances arithmetical problem-solving

Abstract

Personal Best (PB) goals are defined as specific, challenging, and competitively self-referenced goals involving a level of performance or effort that meets or exceeds an individual’s previous best. Much of the available research underpinning arguments for PB goal-setting is self-report-based; thus, the causal effect of PB goals on learning outcomes remains in question. The present experiment examined the impact of PB goal-setting (against a no-goal condition) on 68 Year 5 and 6 schoolchildren’s problem-solving during an arithmetic fluency-building activity, SuperSpeed Math. Equivalence of the two conditions was established across a range of prior ability and self-report motivational variables, including prior mathematical ability; Personal Best, Mastery, and Performance goal orientations at the individual and classroom level; mathematics self-concept; and valuing of and interest in mathematics. Controlling for initial problem-solving performance, students who set PB goals in subsequent rounds showed a small but reliable advantage over students in the control condition. These results suggest PB goals may provide a way for students to experience both challenge and success in a range of classroom activities. Suggestions for future research based on these initial findings are made.

This is a preview of subscription content, log in to check access.

Notes

  1. 1.

    Reliability coefficients are not provided as these were single-item constructs.

References

  1. Alschuler, A. S. (1969). The effects of classroom structure on achievement motivation and academic performance. Educational Technology, IX, 19–24.

    Google Scholar 

  2. Ames, C. (1992). Classrooms: Goals, structures, and student motivation. Journal of Educational Psychology, 84, 261–271.

    Article  Google Scholar 

  3. Anderman, E. M., Gimbert, B., O’Connell, A. A., & Riegel, L. (2015). Approaches to academic growth assessment. British Journal of Educational Psychology, 85, 138–153. https://doi.org/10.1111/bjep.12053.

    Article  Google Scholar 

  4. Beady, C. H., Slavin, R. E., & Fennessey, G. M. (1981). Alternative student evaluation structures and a focused schedule of instruction in an innercity junior high school. Journal of Educational Psychology, 73, 518–523.

    Article  Google Scholar 

  5. Biffle, C. (2007a). SuperSpeed math. Yucaipa: Crafton Hills College.

    Google Scholar 

  6. Biffle, C. (2007b). SuperSpeed letters and phonics. Yucaipa: Crafton Hills College.

    Google Scholar 

  7. Boomsma, A., & Herzog, W. (2013). R function swain: Correcting structural equation model t-statistics and indexes under small-sample and/or large-model conditions. Retrieved March 28, 2017, from http://www.ppsw.rug.nl/~boomsma/swain.pdf.

  8. Bratina, T. A., & Krudwig, K. M. (2003). Get it right and get it fast! Building automaticity to strengthen mathematical proficiency. Focus on Learning Problems in Mathematics, 25, 47–63.

    Google Scholar 

  9. Breaugh, J. A. (2003). Effect size estimation: Factors to consider and mistakes to avoid. Journal of Management, 29, 79–97.

    Article  Google Scholar 

  10. Dweck, C. S. (2012). Mindsets and human nature: Promoting change in the Middle East, the schoolyard, the racial divide, and willpower. American Psychologist, 67, 614–622. https://doi.org/10.1037/a0029783.

    Article  Google Scholar 

  11. Edgington, E., & Onghena, P. (2007). Randomization tests. Boca Raton, FL: CRC Press.

    Google Scholar 

  12. Elliot, A. J. (2005). A conceptual history of the achievement goal construct. In A. J. Elliot & C. Dweck (Eds.), Handbook of competence and motivation (pp. 52–72). New York, NY: Guilford Press.

    Google Scholar 

  13. Elliot, A. J., & McGregor, H. A. (2001). A 2 × 2 achievement goal framework. Journal of Personality and Social Psychology, 80, 501–519.

    Article  Google Scholar 

  14. Elliot, A. J., Murayama, K., & Pekrun, R. (2011). A 3 × 2 achievement goal model. Journal of Educational Psychology, 103, 632–648. https://doi.org/10.1037/a0023952.

    Article  Google Scholar 

  15. Graham, J. W., & Hoffer, S. M. (2000). Multiple imputation in multivariate research. In T. D. Little, K. U. Schnable, & J. Baumert (Eds.), Modeling longitudinal and multilevel data: Practical issues, applied approaches, and specific examples (pp. 201–218). Mahwah, NJ: Erlbaum.

    Google Scholar 

  16. Hattie, J. (2009). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. New York: Routledge.

    Google Scholar 

  17. Hayes, A. F. (2017). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach (2nd ed.). New York: Guilford Publications.

    Google Scholar 

  18. Herzog, W., & Boomsma, A. (2009). Small-sample robust estimators of noncentrality-based and incremental model fit. Structural Equation Modeling, 16, 1–27. https://doi.org/10.1080/10705510802561279.

    Article  Google Scholar 

  19. Huitema, B. (2011). The analysis of covariance and alternatives: Statistical methods for experiments, quasi-experiments, and single-case studies (2nd ed.). Hoboken, NJ: Wiley.

    Google Scholar 

  20. Kanfer, R., & Ackerman, P. L. (1989). Motivation and cognitive abilities: An integrative/aptitude-treatment interaction approach to skill acquisition. Journal of Applied Psychology, 74, 657–690.

    Article  Google Scholar 

  21. Keselman, H. J., Othman, A.R., & Wilcox, R.R. (2013). Preliminary testing for normality: Is this a good practice? Journal of Modern Applied Statistical Methods, 12(2), 2. Retrieved from http://digitalcommons.wayne.edu/jmasm/vol12/iss2/2

  22. Klein, H. J., Wesson, M. J., Hollenbeck, J. R., Wright, P. M., & DeShon, R. P. (2001). The assessment of goal commitment: A measurement model meta-analysis. Organizational Behavior and Human Decision Processes, 85, 32–55. https://doi.org/10.1006/obhd.2000.2931.

    Article  Google Scholar 

  23. Kratochwill, T. R., & Levin, J. R. (Eds.). (2014). Single-case intervention research: Methodological and statistical advances. Washington, DC: American Psychological Association.

    Google Scholar 

  24. Latham, E. A., & Locke, G. P. (2013). Goal setting theory, 1990. In E. A. Locke & G. P. Latham (Eds.), New developments in goal setting and task performance (pp. 3–15). New York: Routledge.

    Google Scholar 

  25. Liem, G. A. D., Ginns, P., Martin, A. J., Stone, B., & Herett, M. (2012). Personal best goals and academic and social functioning: A longitudinal perspective. Learning and Instruction, 22, 222–230. https://doi.org/10.1016/j.learninstruc.2011.11.003.

    Article  Google Scholar 

  26. Locke, E. A., & Latham, G. P. (2002). Building a practically useful theory of goal setting and task motivation: A 35-year odyssey. American Psychologist, 57, 705–717.

    Article  Google Scholar 

  27. Marsh, H. W. (1990). Self description questionnaireI (SDQ I). Manual. Macarthur, NSW. Australia: University of Western Sydney.

  28. Marsh, H. W., Balla, J. R., & Hau, K. T. (1996). An evaluation of incremental fit indices: A clarification of mathematical and empirical processes. In G. A. Marcoulides & R. E. Schumacker (Eds.), Advanced structural equation modeling techniques (pp. 315–353). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  29. Marsh, H. W., Hau, K. T., & Wen, Z. (2004). In search of golden rules: Comment on hypothesis-testing approaches to setting cutoff values for fit indexes and dangers in overgeneralizing Hu and Bentler’s (1999) findings. Structural Equation Modeling, 11, 320–341. https://doi.org/10.1207/s15328007sem1103_2.

    Article  Google Scholar 

  30. Martin, A. J. (2006). Personal bests (PBs): A proposed multidimensional model and empirical analysis. British Journal of Educational Psychology, 76, 803–825. https://doi.org/10.1348/000709905X55389.

    Article  Google Scholar 

  31. Martin, A. J. (2011a). Personal Best (PB) approaches to academic development: Implications for motivation and assessment. Educational Theory and Practice, 33, 93–99.

    Article  Google Scholar 

  32. Martin, A. J. (2011b). The Motivation and Engagement Scale. Sydney, Australia: Lifelong Achievement Group.

    Google Scholar 

  33. Martin, A. J. (2015). Implicit theories about intelligence and growth (personal best) goals: Exploring reciprocal relationships. British Journal of Educational Psychology, 85, 207–223. https://doi.org/10.1111/bjep.12038.

    Article  Google Scholar 

  34. Martin, A. J., Anderson, J., Bobis, J., Way, J., & Vellar, R. (2012). Switching on and switching off in mathematics: An ecological study of future intent and disengagement among middle school students. Journal of Educational Psychology, 104, 1–18. https://doi.org/10.1037/a0025988.

    Article  Google Scholar 

  35. Martin, A. J., Durksen, T. L., Williamson, D., Kiss, J., & Ginns, P. (2014). Personal Best (PB) goal setting and students’ motivation in science: A study of science valuing and aspirations. The Australian Educational and Developmental Psychologist, 31, 85–96. https://doi.org/10.1017/edp.2014.19.

    Article  Google Scholar 

  36. Martin, A. J., & Elliot, A. J. (2016a). The role of personal best (PB) and dichotomous achievement goals in students’ academic motivation and engagement: A longitudinal investigation. Educational Psychology, 36, 1285–1302. https://doi.org/10.1080/01443410.2015.1093606.

    Article  Google Scholar 

  37. Martin, A. J., & Elliot, A. J. (2016b). The role of personal best (PB) goal setting in students’ academic achievement gains. Learning and Individual Differences, 45, 222–227. https://doi.org/10.1016/j.lindif.2015.12.014.

    Article  Google Scholar 

  38. Martin, A. J., & Liem, G. A. D. (2010). Academic personal bests (PBs), engagement, and achievement: A cross-lagged panel analysis. Learning and Individual Differences, 20(3), 265–270. https://doi.org/10.1016/j.lindif.2010.01.001.

    Article  Google Scholar 

  39. McDonald, R. P., & Marsh, H. W. (1990). Choosing a multivariate model: Noncentrality and goodness-of-fit. Psychological Bulletin, 107, 247–255.

    Article  Google Scholar 

  40. Muthén, L.K. & Muthén, B.O. (1998–2010). Mplus user’s guide. Los Angeles: Muthén & Muthén.

  41. Nordstokke, D. W., & Zumbo, B. D. (2010). A new nonparametric test for equal variances. Psicologica, 31, 401–430.

    Google Scholar 

  42. Nordstokke, D. W., Zumbo, B. D., Cairns, S .L., & Saklofske, D. H. (2011). The operating characteristics of the nonparametric Levene test for equal variances with assessment and evaluation data. Practical Assessment, Research & Evaluation, 16. 84. Retrieved from http://pareonline.net/getvn.asp?v=16&n=5.

  43. Prentice, D. A., & Miller, D. T. (1992). When small effects are impressive. Psychological Bulletin, 112, 160–164.

    Article  Google Scholar 

  44. Schmidt, F. L. (2013). The economic value of goal setting to employers. In E. A. Locke & G. P. Latham (Eds.), New developments in goal setting and task performance (pp. 16–20). New York: Routledge.

    Google Scholar 

  45. Schunk, D. H. (1985). Participation in goal setting: Effects on self-efficacy and skills of learning-disabled children. The Journal of Special Education, 19, 307–317.

    Article  Google Scholar 

  46. Schunk, D. H., & Rice, J. M. (1989). Learning goals and children’s reading comprehension. Journal of Reading Behavior, 21, 279–293.

    Article  Google Scholar 

  47. Seijts, G. H., Latham, G. P., & Woodwark, M. (2013). Learning goals: A qualitative and quantitative review. In E. A. Locke & G. P. Latham (Eds.), New developments in goal setting and task performance (pp. 195–212). New York: Routledge.

    Google Scholar 

  48. Slavin, R. E. (1980). Effects of individual learning expectations on student achievement. Journal of Educational Psychology, 72, 520–524.

    Article  Google Scholar 

  49. Steiner, E. T., & Ashcraft, M. H. (2012). Three brief assessments of math achievement. Behavior Research Methods, 44, 1101–1107. https://doi.org/10.3758/s13428-011-0185-6.

    Article  Google Scholar 

  50. Swain, A.J. (1975). Analysis of parametric structures for variance matrices. Unpublished doctoral dissertation, Department of Statistics, University of Adelaide, Australia.

  51. Tallmadge, G. A. (1977). The joint dissemination review panel ideabook. Washington, DC: National Institute of Education & US Office of Education.

    Google Scholar 

  52. Weinberg, R. S. (2002). Goal setting in sport and exercise: Research to practice. In J. L. Van Raalte & B. W. Brewer (Eds.), Exploring sport and exercise psychology (pp. 25–48). Washington, DC: American Psychological Association.

    Google Scholar 

  53. Whisman, M. A., & McClelland, G. H. (2005). Designing, testing, and interpreting interactions and moderator effects in family research. Journal of Family Psychology, 19, 111–120. https://doi.org/10.1037/0893-3200.19.1.111.

    Article  Google Scholar 

  54. Williams, K. J. (2013). Goal setting in sports. In E. A. Locke & G. P. Latham (Eds.), New developments in goal setting and task performance (pp. 375–396). New York: Routledge.

    Google Scholar 

  55. Yeager, D. S., & Walton, G. M. (2011). Social-psychological interventions in education: They’re not magic. Review of Educational Research, 81, 267–301. https://doi.org/10.3102/0034654311405999.

    Article  Google Scholar 

  56. Yu, K., & Martin, A. J. (2014). Personal best (PB) and ‘classic’ achievement goals in the Chinese context: their role in predicting academic motivation, engagement and buoyancy. Educational Psychology, 34, 635–658. https://doi.org/10.1080/01443410.2014.895297.

    Article  Google Scholar 

  57. Yuan, K. H. (2005). Fit indices versus test statistics. Multivariate Behavioral Research, 40, 115–148. https://doi.org/10.1207/s15327906mbr4001_5.

    Article  Google Scholar 

Download references

Acknowledgements

The present study was supported by Discovery Research Project Grant DP140104294.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paul Ginns.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ginns, P., Martin, A.J., Durksen, T.L. et al. Personal Best (PB) goal-setting enhances arithmetical problem-solving. Aust. Educ. Res. 45, 533–551 (2018). https://doi.org/10.1007/s13384-018-0268-9

Download citation

Keywords

  • Goal setting
  • Personal Best (PB) goals
  • Mathematics
  • Problem-solving