1 Introduction

Let D be a smoothly bounded pseudoconvex domain D in \({\mathbb {C}}^n\). Let \(u\in C^2(D)\) be a real-valued function and let H(u) denote the \(n\times n\) complex Hessian matrix of u. We say that u is strictly plurisubharmonic in D if H(u) is positive definite on D. When u is strictly plurisubharmonic in D, u induces a Kähler metric

$$\begin{aligned} g=g[u] =\sum _{i,j=1}^n {\partial ^2 u\over \partial z_i \partial \overline{z}_j} dz^i \otimes d \overline{z}^j. \end{aligned}$$
(1.1)

We say that the metric g is also Einstein if its Ricci curvature

$$\begin{aligned} R_{k\overline{\ell }}=-{\partial ^2 \log \det [g_{i\overline{j}}] \over \partial z_k \partial \overline{z}_{\ell }} \end{aligned}$$
(1.2)

satisfies the equation: \(R_{k\overline{\ell }}=c g_{k\overline{\ell }}\) for some constant c.

When \(c<0\), after a normalization, we may assume \(c=-(n+1)\). It was proved by Cheng and Yau [5] that the following Monge–Ampère equation:

$$\begin{aligned} \left\{ \begin{array}{c@{\quad }l} \det H(u)=e^{(n+1) u}, &{} z\in D\\ u=+\infty , &{} z\in \partial D\\ \end{array}\right. \end{aligned}$$
(1.3)

has a unique strictly plurisubharmonic solution \(u\in C^\infty (D)\). Moreover, the Kähler metric

$$\begin{aligned} g[u]=\sum _{i,j=1}^n {\partial ^2 u\over \partial z_i \partial \overline{z}_j} dz_i\otimes d\overline{z}_j \end{aligned}$$
(1.4)

induced by u is a complete Kähler–Einstein metric on D.

When D is also strictly pseudoconvex, the existence and uniqueness problem was studied by Fefferman [6] earlier. He considered the following Fefferman equation

$$\begin{aligned} \left\{ \begin{array}{r@{\quad }l} \det J(\rho )=1, &{} z\in D,\\ \rho =0, &{} z\in \partial D,\\ \end{array}\right. \end{aligned}$$
(1.5)

where

$$\begin{aligned} J(\rho )= & {} -\det \left[ \begin{matrix} \rho &{}\overline{\partial }\rho \\ (\overline{\partial }\rho )^* &{} H(\rho )\\ \end{matrix}\right] ,\quad \overline{\partial }\rho =\left( {\partial \rho \over \partial \overline{z}_1},\ldots , {\partial \rho \over \partial \overline{z}_n}\right) \hbox { and } \nonumber \\ (\overline{\partial }\rho )^*= & {} \left( {\partial \rho \over \partial z_1},\ldots , {\partial \rho \over \partial z_n}\right) ^t. \end{aligned}$$
(1.6)

Fefferman searched for a solution \(\rho <0\) on D such that \(u=-\log (-\rho )\) is strictly plurisubharmonic in D. He proved the uniqueness and gave a formal or approximation solution for (1.5).

If the relation between \(\rho \) and u is given by

$$\begin{aligned} \rho (z)=-e^{-u(z)},\qquad z\in D, \end{aligned}$$
(1.7)

then (1.3) is the same as (1.5). Moreover, one can prove (see [14] and references therein) that

$$\begin{aligned} \det H(u)= J(\rho ) e^{(n+1) u}. \end{aligned}$$
(1.8)

When D is smoothly bounded strictly pseudoconvex, it was proved by Cheng and Yau [5] that \(\rho \in C^{n+3/2}(\overline{D})\). In fact, \(\rho \in C^{n+2-\epsilon }(\overline{D})\) for any small \(\epsilon >0\). This follows from an asymptotic expansion formula for \(\rho \) obtained by Lee and Melrose [10]:

$$\begin{aligned} \rho (z)=r(z)\Big (a_0(z)+\sum _{j=1}^\infty a_j (r^{n+1} \log (-r))^j\Big ), \end{aligned}$$
(1.9)

where \(r\in C^\infty (\overline{D})\) is any defining function for D and \(a_j\in C^\infty (\overline{D})\) and \(a_0(z)>0\) on \(\partial D\).

When D is a bounded strictly pseudoconvex domain in \({\mathbb {C}}^n\) with smooth defining function r, one can view \((\partial D, \theta )\) as a pseudo-Hermitian CR manifold with the contact/pseudo Hermitian form

$$\begin{aligned} \theta ={1\over 2 i} (\partial r-\overline{\partial }r). \end{aligned}$$
(1.10)

An interesting and useful question is: How to find a defining function r such that \((\partial D, \theta )\) has positive the Webster-Tanaka pseudo Ricci curvature or pseudo scalar curvature? Under the assumption \(u=-\log (-r)\) is strictly plurisubharmonic near and on \(\partial D\), the following formula for the pseudo-Ricci curvature was discovered by Li and Luk [18]:

$$\begin{aligned} { Ric}_z(w, \overline{v})=-\sum _{k,\ell =1}^n {\partial ^2\log J(r)(z)\over \partial z_k\partial \overline{z}_{\ell }}w_k \overline{v}_{\ell }+ n{\det H(r)\over J(r)} \sum _{j,k=1}^n {\partial ^2 r(z) \over \partial z_k\partial \overline{z}_{\ell }}w_k \overline{v}_{\ell }\nonumber \\ \end{aligned}$$
(1.11)

for \(w, v\in H_z=\{ v=(v_1,\ldots , v_n)\in {\mathbb {C}}^n: \sum _{j=1}^n {\partial r(z)\over \partial z_j} v_j=0\}\).

When g[u] is asymptotic Einstein (i.e. \(J(r)=1+O(r^2))\), one has that

$$\begin{aligned} { Ric}_z(w, \overline{v})= n {\det H(r)\over J(r)} \sum _{j,k=1}^n {\partial ^2 r(z) \over \partial z_k\partial \overline{z}_{\ell }}w_k \overline{v}_{\ell } \end{aligned}$$
(1.12)

for \(w, v\in H_z=\{ v=(v_1,\ldots , v_n)\in {\mathbb {C}}^n : \sum _{j=1}^n {\partial r(z)\over \partial z_j} v_j=0\}\). In this case, the Webster-Tanaka pseudo-Hermitian metric is a pseudo Einstein metric. Moreover, the pseudo Ricci curvature is positive on \(\partial D\) if and only if \(\det H(r)>0\) on \(\partial D\).

Many researches [14, 15, 19, 20] indicate that the following problem is very interesting and very important.

Problem 1

Assume that D is a smoothly bounded strictly pseudoconvex domain in \({\mathbb {C}}^n\). Let \(\rho \) be the solution of the Fefferman equation (1.5) such that \(u=-\log (-\rho )\) is strictly plurisubharmonic in D. For what extra condition on D, one has that \(\rho \) is strictly plurisubharmonic in \(\overline{D}\).

It is well known that \(\rho (z)=|z|^2-1\) is strictly plurisubharmonic when \(D=B_n\), the unit ball in \({\mathbb {C}}^n\). It was proved by the Li [14] that \(\rho \) is strictly plurisubharmonic when D is a bounded domain in \({\mathbb {C}}^n\) whose boundary is a real ellipsoid. In particular, when \(n=2\) case, this result was also proved by Chanillo, Chiu and Yang [2] later.

One of the main purposes of this paper is to give a characterization for domains D in \({\mathbb {C}}^n\) where the answer of Problem 1 is affirmatively true. We first introduce the following definition.

Definition 1.1

Let D be a smoothly bounded domain in \({\mathbb {C}}^n\). We say that D is strictly super-pseudoconvex (super-superconvex) if there is a strictly plurisubharmonic defining function \(r\in C^4(\overline{D})\) such that \({{\mathcal {L}}}_2[r]>0 \) (\({{\mathcal {L}}}_2[r]\ge 0\)) on \(\partial D\), respectively. Here

$$\begin{aligned} {{\mathcal {L}}}_2[r]\!=:\!1\!+\!{|\partial r|^2_r\over n(n+1)} {\tilde{\Delta }} \log J(r)-{2 \mathrm{Re}\,R \log J(r)\over n+1} \!-\!|\partial r|^2_r |\tilde{\nabla }\log J(r)|^2,\qquad \end{aligned}$$
(1.13)

with

$$\begin{aligned} \tilde{\Delta }=\sum _{i,j=1}^n a^{i\overline{j}}[r]{\partial ^2\over \partial z_i \partial \overline{z}_j},\quad R=\sum _{j=1}^nr^j {\partial \over \partial z_j}, \quad |\tilde{\nabla }f|^2= \sum _{i,j=1}^n a^{i\overline{j}}[r]{\partial f \over \partial z_i } {\partial f\over \partial \overline{z}_j}\nonumber \\ \end{aligned}$$
(1.14)

and

$$\begin{aligned} r^i \!=\!\sum _{j=1}^n r^{i\overline{j}} r_{\overline{j}},\quad \Big [r^{i\overline{j}}\Big ]^t=H(r)^{-1},\quad a^{i\overline{j}}[r]=: r^{i\overline{j}}-{r^i r^{\overline{j}}\over -r+|\partial r|_r^2},\quad 1\le i,j \le n.\nonumber \\ \end{aligned}$$
(1.15)

Another motivation of this paper is to apply the result (the solution of Problem 1) to estimate the lower bound of the bottom of the spectrum of Laplace-Beltrami operator \(\Delta _{g[u]}\).

Definition 1.2

Let D be a smoothly bounded strictly pseudoconvex domain in \({\mathbb {C}}^n\). Let \(r\in C^\infty (\overline{D})\) be a defining function for D such that \(u=-\log (-r)\) is strictly plurisubharmonic. We say that the Kähler metric g[u] induced by u is super asymptotic Einstein if

  1. (i)

    the Ricci curvature \(R_{i\overline{j}}\ge -(n+1) g_{i\overline{j}}\) on D; and

  2. (ii)

    \(J(r)=1+O(r^2)\).

Let \((M^n, g)\) be a Kähler manifold with the Kähler metric g. Let \(\Delta _g\) be the Laplcae-Beltrami operator associated to g. Let \(\lambda _1\) denote the bottom of the spectrum of \(\Delta _g\). Then the problem of estimating the upper bound and lower bound for \(\lambda _1\) have studied by many authors, including Cheng [4], Lee [9], Li and Wang [12, 13], Munteanu [22], Li and Tran [19] and Li and Wang [20], Wang [24], etc... When the Ricci curvature is super Einstein: \(R_{i\overline{j}}\ge -(n+1) g_{i\overline{j}}\), Munteanu [22] proves that \(\lambda _1\le n^2\). For the lower bound estimate of \(\lambda _1\), Li and Tran [19] and Li and Wang [20] consider a smoothly bounded pseudoconvex domain in \({\mathbb {C}}^n\) with defining function \(r\in C^4(\overline{D})\) such that \(u=:-\log (-r)\) is strictly plurisubharmonic in D. When r is plurisubharmonic in D, Li and Tran [19] prove that \(\lambda _1=n^2 \). When g[u] is super asymptotic Einstein and \(\det H(r)\ge 0\) on \(\partial D\), Li and Wang [20] prove \(\lambda _1=n^2\). We will show that \(\det H(r)\ge 0\) on \(\partial D\) when D is super-pseudoconvex.

The first result of the paper is the following theorems.

Theorem 1.3

Let D be a smoothly bounded strictly pseudoconvex domain in \({\mathbb {C}}^n\). Let \(\tilde{\rho }\in C^4(\overline{D})\) be a defining function for D such that \(\tilde{u}=-\log (-\tilde{\rho })\) is strictly plurisubharmonic. If the Kähler metric \(g[\tilde{u}]\) induced by \(\tilde{u}\) is the super asymptotic Einstein, then the following two statements hold:

  1. (i)

    \(\tilde{\rho }\) is strictly plurisubharmonic on \(\overline{D}\) if and only if D is strictly super-pseudoconvex. In particular if \(\tilde{\rho }=\rho (z)\) is the solution of (1.5) then \(\rho \) is strictly plurisubharmonic in \(\overline{D}\) when D is strictly super-pseudoconvex;

  2. (ii)

    If D is also super-pseudoconvex then \(\lambda _1(\Delta _{g[\tilde{u}]})=n^2\), where \(\Delta _g=-4\sum _{i,j=1}^n g^{i\overline{j}}{\partial ^2\over \partial z_i \partial \overline{z}_j}\).

It is interesting to bridge the relation between convex and super-pseudoconvex. The second result of the paper is:

Theorem 1.4

Let D be a smoothly bounded domain in \({\mathbb {C}}^n\). Then

  1. (i)

    When \(n=1\), D is strictly super-pseudoconvex (super-pseudoconvex) if and only if D is strictly convex (convex);

  2. (ii)

    When \(n>1\), if D is convex and if there is a strictly plurisubharmonic defining function \( r \in C^4(\overline{D})\) such that

    $$\begin{aligned} n-1 \!+\! { |\partial r|^2\over n } a^{k\overline{\ell }}[r]\Big [\tilde{\Delta }r_{k\overline{\ell }}\!-\!a^{i\overline{q}}[r] r^{p\overline{j}} r_{i\overline{j}k} r_{p\overline{q}\overline{\ell }} \!-\! (\tilde{\Delta }r_k) (\tilde{\Delta }r_{\overline{\ell }}) \Big ] \!-\!2\mathrm{Re}\,r^k \tilde{\Delta }r_k > 0,\nonumber \\ \end{aligned}$$
    (1.16)

    then D is strictly super-pseudoconvex;

  3. (iii)

    The convexity does not imply super-pseudoconvexity and the super-pseudoconvexity does not imply the convexity either.

The paper is organized as follows: Sect. 2, we give an approximation formula. Theorem 1.3 will be proved in Sect. 3; Part (i) and Part (ii) of Theorem 1.4 will be proved in Sect. 4. Finally, in Sect. 5, we provide two domains in \({\mathbb {C}}^2\); one is strictly convex but not super-pseudoconvex and the other is super-pseudoconvex but not convex. These prove Part (iii) of Theorem 1.4.

2 An approximation formula

Let D be a bounded domain in \({\mathbb {C}}^n\) with smooth boundary. Let \(r\in C^2(\overline{D})\) be a real-valued, negative defining function for D. Then the Fefferman operator [5, 6] acting on r is defined by

$$\begin{aligned} J(r)=-\det \left[ \begin{matrix} r &{} \overline{\partial }r\\ (\overline{\partial }r)^* &{} H(r)\\ \end{matrix}\right] , \end{aligned}$$
(2.1)

where \(\overline{\partial }r=({\partial r\over \partial \overline{z}_1},\ldots , {\partial r\over \partial \overline{z}_n})=(r_{\overline{1}},\ldots , r_{\overline{n}})\) is a row vector in \({\mathbb {C}}^n\) and \((\overline{\partial }r)^*\) is its adjoint vector, which is column vector in \({\mathbb {C}}^n\) and \(H(r)=[{\partial ^2 r\over \partial z_i \partial \overline{z}_j}]\) is the \(n\times n\) complex Hessian matrix of r.

If \(H(r)=[r_{i\overline{j}}]\) is invertible, in particular it is positive definite, then we use the notation \([r^{i\overline{j}}]^t=:H(r)^{-1}\) and

$$\begin{aligned} |\partial r|_r^2=\sum _{i,j=1}^n r^{i\overline{j}} r_i r_{\overline{j}}. \end{aligned}$$
(2.2)

It is easy to verify that

$$\begin{aligned} J(r)=\det H(r) (-r+|\partial r|_r^2). \end{aligned}$$
(2.3)

In fact, since

$$\begin{aligned} J(r )= & {} (-r) \det \left[ H(r)- {(\overline{\partial }r)^* (\overline{\partial }r) \over r}\right] \nonumber \\= & {} (-r) \det H(r) \left( 1-{|\partial r|_r^2 \over r}\right) \nonumber \\= & {} \det H(r) \left( -r+|\partial r|_r^2\right) . \end{aligned}$$
(2.4)

Remark 1

When H(r) is not positive definite on \(\partial D\), we can replace r by

$$\begin{aligned} r[a]=:r(z)+{a\over 2} r^2. \end{aligned}$$
(2.5)

Then r[a] is positive definite with a large a and

$$\begin{aligned} J(r)={1\over (1+a r)^n}\det H(r[a]) (-r +(1+2a\, r) |\partial r|_{r[a]}). \end{aligned}$$
(2.6)

From now on, we will always assume that \(r(z)\in C^\infty (\overline{D})\) is a negative defining function for D such that

$$\begin{aligned} \ell (r)=-\log (-r) \end{aligned}$$
(2.7)

is strictly plurisubharmonic in D. It is known from [5, 1416] that the following identity holds:

$$\begin{aligned} \det H(\ell (r))=J(r) e^{(n+1)\ell (r)}. \end{aligned}$$
(2.8)

This implies that

  1. (i)

    \(u=:\ell (r)\) is strictly plurisubharmonic on D if and only if \(J(r)>0\) on D;

  2. (ii)

    \(J(r)=1\) if and only if \(\det H(u)=e^{(n+1) u}\) with \(u=:\ell (r)\).

Fefferman [6] gave a formula to approximate the potential function \(\rho \) [for Eq. (1.5)]. He proved that \(J(r\, J(r)^{-1/(n+1)})=1+O(r)\) near \(\partial D\). Higher order approximation can be iterated through the previous steps. Based on the Fefferman’s idea, the iteration formula of the approximation was given in more detail by Graham in [7]. The author [14] gave another modification. For convenience of readers and further argument for the current paper, we will state and prove a second order approximation formula here.

Theorem 2.1

Let D be a smoothly bounded pseudoconvex domain in \({\mathbb {C}}^n\). Let r(z) be a smooth negative defining function for D such that \(\ell (r)\) is strictly plurisubharmonic in D. Let

$$\begin{aligned} \rho _{1}(z) =r(z) J(r)^{-1/(n+1)} e^{-B(z)} \end{aligned}$$
(2.9)

with

$$\begin{aligned} B(z)=B[r](z)={ \hbox {tr}(H(\ell ( r ))^{-1} H(\log J(r)) \over 2n (n+1)}. \end{aligned}$$
(2.10)

Then

$$\begin{aligned} J(\rho _{1})(z)=1+O(r^2). \end{aligned}$$
(2.11)

Moreover, if \(J(r)=1+O(r^2)\) then \(\rho _1=r+O(r^3)\) and \(J(\rho _1)=1+O(r^3)\).

Proof

Since

$$\begin{aligned} H(\ell (r))={1\over (-r)(1+ar)} \left[ H(r_a)+{1+2a\, r \over (-r)} (\overline{\partial }r)^*(\overline{\partial }r)\right] \end{aligned}$$
(2.12)

by choosing \(a\ge 0\) so that r[a] is strictly plurisubharmonic. Therefore, we can write

$$\begin{aligned} B(z)=(-r) B_0(z), \end{aligned}$$
(2.13)

with \(B_0\in C^\infty (\overline{D})\). Since

$$\begin{aligned} H(B)= & {} (-r) H(B_0)-B_0 \left( H(r)+{(\overline{\partial }r)^* \overline{\partial }r\over -r}\right) +B_0{(\overline{\partial }r)^* \overline{\partial }r\over -r}-(\overline{\partial }r)^* (\overline{\partial }B_0)\nonumber \\&-(\overline{\partial }B)^* (\overline{\partial }r). \end{aligned}$$
(2.14)

By complex rotation, one may assume that \({\partial r\over \partial z_j}(z_0)=0\) for \(1\le j\le n-1\) and \(H(r)(z_0)\) is diagonal, it is easy to verify that

$$\begin{aligned} \hbox {tr}(H(\ell (r)^{-1}H(B)) =-n B(z)+(-r)B_0+O(r^2)=-(n-1)B +O(r^2).\nonumber \\ \end{aligned}$$
(2.15)

Since

$$\begin{aligned} J(\rho _1)(z) e^{(n+1)\ell (\rho _1)}= & {} \det H(\ell (\rho _1)) \\= & {} \det \Big ( H(\ell (r)) +{1\over n+1} H(\log J) +H(B)\Big )\\ \!= & {} \!\det H(\ell (r)) \det \Bigg ( I_n\!+\! H(\ell (r))^{-1}\left[ {1\over n\!+\!1} H(\log J) \!+\!H(B)\right] \Bigg )\\ \!= & {} \!J(r)e^{(n+1)\ell (r)} \det \Bigg ( I_n\!+\! H(\ell (r))^{-1}\left[ {1\over n\!+\!1} H(\log J) \!+\!H(B)\!\right] \Bigg ) \end{aligned}$$

Notice that \(\exp ((n+1)\ell (\rho _1))=\exp ((n+1)B) J(r) \exp ((n+1)\ell (r))\), we have

$$\begin{aligned} J(\rho _1)(z)= & {} e^{-(n+1) B} \det \Bigg ( I_n+ H(\ell (r))^{-1}\left[ {1\over n+1} H(\log J) +H(B)\right] \Bigg )\\= & {} e^{-(n+1) B}\left[ 1+\hbox {tr}\left[ H(\ell (r))^{-1}\left[ {1\over n+1} H(\log J) +H(B)\right] \right] \right] +O(r^2)\\= & {} e^{-(n+1) B}[1+2n B +\hbox {tr}( H(\ell (r))^{-1} H(B)] +O(r^2)\\= & {} e^{-(n+1)B}[1+2n B -(n-1) B+O(r^2)]+O(r^2)\\= & {} 1+{(n+1)^2\over 2} B^2+O(r^2)\\= & {} 1+O(r^2). \end{aligned}$$

When \(J(r)=1+A r^2\) with A is smooth on \(\overline{D}\), it is easy to prove \(B=B_1 r^2\) with \(B_1\) smooth in \(\overline{D}\) near \(\partial D\). It is also easy to verify that \(\rho _1[r]=r+O(r^3)\) and \(J(\rho _1[r])=1+O(r^3)\). This proves Theorem 2.1.\(\square \)

Proposition 2.2

Let D be a smoothly bounded strictly pseudoconvex domain in \({\mathbb {C}}^n\). Let u be the plurisubharmonic solution of (1.3) and \(\rho (z)=-e^{-u}\). Then for any smooth defining function r of D with \(\ell (r)\) being strictly plurisubharmonic in D, we have

$$\begin{aligned} \det H(\rho )= & {} J(r)^{-n\over n+1} \det \Big ( H(r) -{ [\partial _i r \partial _{\overline{j}} \log J+ \partial _i \log J(r)\, \partial _{\overline{j}} r]\over n+1}\nonumber \\&-[\partial _i r \partial _{\overline{j}} B(z)+\partial _i B \partial _{\overline{j}} r] \Big ) \end{aligned}$$
(2.16)

on \(\partial D\), where \(B(z)=B[r](z)\) is given by (2.10).

Proof

Let

$$\begin{aligned} \rho _1(z)=\rho _1[r]=:r(z) J(r)^{-1/(n+1)} e^{-B}. \end{aligned}$$
(2.17)

Theorem 2.1 implies that \(\rho (z)=\rho _1(z)+O(r(z)^3)\). A simple calculation shows that

$$\begin{aligned} \det H(\rho )=\det H(\rho _1),\quad z\in \partial D. \end{aligned}$$
(2.18)

By (2.13) (\(B=(-r) B_0\)), one can easily see that

$$\begin{aligned} \rho _1(z)=r(z) J(r)^{-1/(n+1)} -r(z) J(r)^{-1/(n+1)} B(z)+O(r(z)^3) \end{aligned}$$
(2.19)

and

$$\begin{aligned} \det H(\rho _1)=\det H\Big (r(z) J(r)^{-1/(n+1)} -r(z) J(r)^{-1/(n+1)} B(z)\Big ),\quad z\in \partial D.\nonumber \\ \end{aligned}$$
(2.20)

For any \(z\in \partial D\), by (2.20), one has

$$\begin{aligned} \det H(\rho _1)(z)= & {} \det \Big ( H(r J(r)^{-1/(n+1)} ) -J(r)^{-1/(n+1)} [\partial _i r \partial _{\overline{j}} B+\partial _i B \partial _{\overline{j}} r] \Big )\nonumber \\= & {} \det \Big ( J(r)^{-1\over (n+1)} H(r) -{ J^{-(n+2)\over (n+1)}\over n+1} [\partial _i r \partial _{\overline{j}} J+ \partial _i J(r) \partial _{\overline{j}} r]\nonumber \\&-J(r)^{-1\over (n+1)} [\partial _i r \partial _{\overline{j}} B+\partial _i B \partial _{\overline{j}} r] \Big )\nonumber \\= & {} J(r)^{-n\over n+1} \det \Big ( H(r) -{ 1\over n+1} [\partial _i r \partial _{\overline{j}} \log J+ \partial _i \log J(r)\, \partial _{\overline{j}} r]\nonumber \\&-[\partial _i r \partial _{\overline{j}} B+\partial _i B \partial _{\overline{j}} r] \Big ). \end{aligned}$$
(2.21)

This proves Proposition 2.2. \(\square \)

Let \(u^{D_j}\) be the potential functions for the Kähler–Einstein metric of \(D_j\) and let

$$\begin{aligned} \rho ^{D_j}(z)=-e^{-u^{D_j}(z)},\quad j=1, 2. \end{aligned}$$
(2.22)

Proposition 2.3

Let \(\phi : D_1\rightarrow D_2\) be a smooth biholomorphic mapping. Then

$$\begin{aligned} \rho ^{D_1}(z)=\rho ^{D_2}(\phi (z)) |\det \phi '(z)|^{-2/(n+1)} \end{aligned}$$
(2.23)

In particular, if \(\det \phi '(z)\) is constant c then

$$\begin{aligned} \det H(\rho ^{D_1})(z)=|c|^{2/(n+1)} \det H(\rho ^{D_2})(\phi (z)). \end{aligned}$$
(2.24)

Proof

Since \(\phi : D_1\rightarrow D_2\) is biholomorphic, one has that if \(u^{D_j}\) is the unique plurisubharmonic solutions for the Monge–Ampère equation:

$$\begin{aligned} \left\{ \begin{array}{c@{\quad }l} \det H(u)=e^{(n+1) u}, &{} z\in D_j\\ u=\infty ,&{} z\in \partial D_j\\ \end{array}\right. \end{aligned}$$
(2.25)

Then

$$\begin{aligned} u^{D_1}(z)=u^{D_2}(\phi (z))+{1\over n+1}\log |\det \phi '(z)|^2,\quad z\in D_1 \end{aligned}$$
(2.26)

and

$$\begin{aligned} \rho ^{D_1}(z)=\rho ^{D_2}(\phi (z))|\det \phi '(z)|^{-2/(n+1)}. \end{aligned}$$
(2.27)

In particular, when \(\det \phi '(z)=c\), one has

$$\begin{aligned} \det H(\rho ^{D_1})(z)=|c|^{-2n/(n+1)} \det H(\rho ^{D_2})(\phi (z)) |c|^2=|c|^{2/(n+1)} \det H(\rho ^{D_2})(\phi (z)) \end{aligned}$$

and the proof of Proposition 2.3 is complete. \(\square \)

We also need the following holomorphic change of variables formula.

Lemma 2.4

For \(z_0\in \partial D\), if \(z=\phi (w): B(0,\delta _0) \rightarrow B(z_0, 1)\) be a one-to-one holomorphic map with \(\phi (0)=z_0\) and \(r(z)=\tilde{r}(w)\), then

$$\begin{aligned} \rho _1(\phi (w))=|\det \phi '(w)|^{2/(n+1)} {\tilde{r}(w)\over J(\tilde{r}(w))^{1/(n+1)}}e^{-B(\tilde{r}(w))}. \end{aligned}$$
(2.28)

Moreover, if \(|\det \phi '(z)|^2\) is a constant on \(B(0,\delta _0)\) for some \(\delta _0>0\)

$$\begin{aligned} \det H(\rho _1)(z_0) |\det \phi '(0)|^{2\over n+1}= \det H\Big ( {\tilde{r}\over J(\tilde{r})^{1/(n+1)}}e^{-B(\tilde{r})}\Big )(0). \end{aligned}$$
(2.29)

Proof

Since \(|\det \phi '(z)|^2\) is constant, by the definitions for B[r] and J(r) from Theorem 2.1, one can easily prove (2.27) and (2.29), and the proposition is proved. \(\square \)

3 Proof of Theorem 1.3

Let D be a smoothly bounded strictly pseudoconvex domain in \({\mathbb {C}}^n\). Let \(r\in C^\infty (\overline{D})\) be any strictly plurisubharmonic defining function for D. Let

$$\begin{aligned} \rho _1(z)= r(z) J(r)^{-1/(n+1)} \exp (-B(z)) \end{aligned}$$
(3.1)

where

$$\begin{aligned} B(z)={ \hbox {tr}(H(\ell (r))^{-1} H(\log J(r)) \over 2n (n+1)}, \end{aligned}$$
(3.2)

According to Theorem 2.1, one has

$$\begin{aligned} J(\rho _1)=1+O(r(z)^2). \end{aligned}$$
(3.3)

Let \(\rho =\rho ^D\) be the solution of (1.5) such that \(\ell (\rho )\) is strictly plurisubharmonic in D. Then

$$\begin{aligned} \det H(\rho )(z)=\det H(\rho _1)(z)\quad \hbox {on }\partial D. \end{aligned}$$
(3.4)

By Proposition 2.2 and

$$\begin{aligned} B(z)= & {} {(-r)\over 2n (n+1)} \hbox {tr}\left[ \left( H(r)+{r_i r_{\overline{j}}\over -r}\right) ^{-1} H(\log J(r)) \right] (z)\nonumber \\= & {} {(-r)\over 2n (n+1)}\sum _{j,k=1}^n \left( r^{i\overline{j}} -{r^i r^{\overline{j}} \over -r+|\partial r|_r^2}\right) {\partial ^2 \log J(r)\over \partial z_i\partial \overline{z}_j} =-B^0(z) r, \end{aligned}$$
(3.5)

where

$$\begin{aligned} B^0(z)={1\over 2n (n+1)} \sum _{j,k=1}^n a^{i\overline{j}}[r] {\partial ^2 \log J(r)\over \partial z_i\partial \overline{z}_j}={1\over 2n(n+1)}{\tilde{\Delta }}_r \log J(r). \end{aligned}$$
(3.6)

Thus for \(z_0\in \partial D\), one has

$$\begin{aligned} \partial _j B (z_0)=- B^0(z_0) \partial _j r (z_0), \quad \partial _{\overline{j}} B (z_0)=- B^0(z_0) \partial _{\overline{j}} r (z_0), \quad \hbox { for } 1\le j\le n.\nonumber \\ \end{aligned}$$
(3.7)

Let

$$\begin{aligned} R=\sum _{j=1}^n r^{j} {\partial \over \partial z_j},\quad \overline{R}=\sum _{j=1}^n r^{\overline{j}}{\partial \over \partial \overline{z}_j},\quad r^i=r^{i\overline{j}} r_{\overline{j}}, \ \ r^{\overline{j}}=r^{i\overline{j}} r_i. \end{aligned}$$
(3.8)

and

$$\begin{aligned} \Big | \tilde{\nabla _r} f \Big |^2=:\sum _{i,j=1}^n \left( r^{i\overline{j}}-{r^i r^{\overline{j}}\over -r +|\partial r|_r^2}\right) \partial _i f\partial _{\overline{j}} f=\sum _{i,j=1}^n r^{i\overline{j}} \partial _i f\partial _{\overline{j}} f-{|R f|^2\over -r +|\partial r|^2_r }.\nonumber \\ \end{aligned}$$
(3.9)

Then it is easy to see that

$$\begin{aligned} |\tilde{\nabla }_r r|^2=0\quad \hbox { on }\ \partial D. \end{aligned}$$
(3.10)

Therefore, by (2.21) and Lemma 3.1 in [14], at \(z=z_0\in \partial D\), one has

$$\begin{aligned}&\det H(\rho )(z^0)\,J(r)^{n/(n+1)}(z^0)\nonumber \\&\quad =\det H(r) \Bigg (\Big | 1- r^{i\overline{j}} \left( \partial _i r\, \Bigg ({\partial _{\overline{j}}\log J(r) \over n+1}-B^0 \partial _{\overline{j}} r\Bigg )\right) \Big |^2\Bigg )\nonumber \\&\qquad - |\partial r|_r^2 \sum _{i,j=1}^n r^{i\overline{j}} \left( {\partial _{i}\log J(r) \over n+1}-B^0 \partial _i r\right) \left( {\partial _{\overline{j}}\log J(r) \over n+1}-B^0 \partial _{\overline{j}} r\right) \Bigg )\nonumber \\&\quad =\det H(r) \Big (\Big | 1- { \overline{R}\log J(r) \over n+1}+B^0 |\partial r|^2_r\Big |^2\nonumber \\&\qquad - |\partial r|_r^2 \sum _{i,j=1}^n r^{i\overline{j}} {\partial _{i}\log J(r) \partial _{\overline{j}} \log J(r)\over (n+1)^2} +|\partial r|_r^2 2\mathrm{Re}\,B^0 {\overline{R}\log J(r)\over n+1} - |\partial r|_r^4 |B^0|^2 \Big )\nonumber \\&\quad =\det H(r) \Big (1+2 B^0 |\partial r|^2 -2\mathrm{Re}\,{\overline{R}\log J(r)\over n+1} -{|\partial r|_r ^2\over (n+1)^2} |\tilde{\nabla }_r \log J(r)|^2 \Big )\nonumber \\&\quad \!=\!\det H(r) \Big (1\!+\!{|\partial r|^2\over n(n+1)} \tilde{\Delta }\log J(r) \!-\!2\mathrm{Re}\,{\overline{R}\log J(r)\over n+1} \!-\!{|\partial r|_r ^2\over (n+1)^2} |\tilde{\nabla }_r \log J(r)|^2 \Big )\nonumber \\&\quad > 0 \end{aligned}$$
(3.11)

since D is strictly super-pseudoconvex, there is a strictly plurisubharmonic function \(r\in C^4(\overline{D})\) such that the above inequality holds on \(\partial D\). If \(\tilde{\rho }\) is smooth defining function for D such that the Kähler metric induced by \(\tilde{u}=-\log (-\tilde{\rho })\) is super asymptotic Enistein, then \(\det H(\tilde{\rho })=\det H(\rho ) >0\) on \(\partial D\) by (3.11). By Lemma 2 in [20], one has that \(\det H(\tilde{\rho })\) attains its minimum over \(\overline{D}\) at some ponit in \(\partial D\). Therefore, \(\det H(\tilde{\rho })>0\) on \(\overline{D}\) and the proof of Part (i) of Theorem 1.3 is complete. Part (ii) of Theorem  1.3 is a corollary of Part (i) and the result in [19] and [20]. Therefore, the proof of Theorem 1.3 is complete. \(\square \)

4 Super-pseudoconvex domains

In this section, we will study the relation between super-pseudoconvex domains and convex domains when \(n=1\). We will also study and simplify some quantities in the definition of the super-pseudoconvex domain in \({\mathbb {C}}^n\). Since

$$\begin{aligned} \log J(r)= & {} \log \det H(r)+\log (-r+|\partial r|_r^2), \end{aligned}$$
(4.1)
$$\begin{aligned} {\partial (-r +|\partial r|^2_r)\over \partial z_k}= & {} -r_k+ \partial _k(r^{i\overline{j}}) r_ i r_{\overline{j}} +r^{i\overline{j}} r_{ik} r_{\overline{j}}+r^{i\overline{j}} r_i r_{k\overline{j}}\nonumber \\= & {} -r ^{i \overline{q}} r^{p\overline{j}} r_{p\overline{q}k} r_ i r_{\overline{j}} +r^{i\overline{j}} r_{ik} r_{\overline{j}} \nonumber \\= & {} -r ^{ \overline{q}} r^{p} r_{p\overline{q}k} +r^{i} r_{ik} \end{aligned}$$
(4.2)

and

$$\begin{aligned} {\partial \log J\over \partial z_k}= & {} {\partial \log \det H(r)+\log (-r+|\partial r|^2_r)\over \partial z_k}\nonumber \\= & {} \left( r^{i\overline{j}} -{r^i r^{\overline{j}}\over -r+|\partial r|_r^2} \right) r_{i\overline{j}k} +{r^i r_{ik}\over -r+|\partial r|_r^2}, \end{aligned}$$
(4.3)

we have

$$\begin{aligned} R \log J(r)(z_0)= r^k {\tilde{\Delta }} r_k + {r^i r^k\over |\partial r|_r^2} r_{ik}. \end{aligned}$$
(4.4)

Thus,

$$\begin{aligned} \det H(\rho )(z^0)\,J(r)^{n/(n+1)}(z^0) =\det H(r) \Big (1-{2 \mathrm{Re}\,r^k r^i r_{ik}\over (n+1)|\partial r|^2}+ \tilde{E}(r)\Big ), \end{aligned}$$
(4.5)

where

$$\begin{aligned} \tilde{E}(r)=: { |\partial r|^2 \over n(n+1)}\Big [ {\tilde{\Delta }} \log J(r) -{n |{\tilde{\nabla }}\log J(r)|^2\over (n+1)} -2n \mathrm{Re}\,\left( {r^k \tilde{\Delta }r_k\over |\partial r|_r^2} \right) \Big ]. \end{aligned}$$
(4.6)

Proposition 4.1

Let D be a smoothly bounded domain in the complex plane \({\mathbb {C}}\). Then D is (strictly) super-pseudoconvex if and only if D is (strictly) convex.

Proof

Let r be any smooth strictly subharmonic defining function on \(D\subset {\mathbb {C}}\). By (4.5) and (4.6), we have \(a^{1\overline{1}}[r]=0\) and \(\tilde{E}(r)=0\) on \(\partial D\). Therefore, D is strictly super-pseudoconvex if and only if

$$\begin{aligned} S_r(z)=:\det H(r) \Big (1-{2\over n+1}\mathrm{Re}\,{r^k r^i r_{ik}\over |\partial r|_r^2}\Big ) >0 \end{aligned}$$
(4.7)

on \(\partial D\). For ant \(z_0\in \partial D\), by rotation, we may assume that \( r_n(z_0)>0\). Thus

$$\begin{aligned} S_r(z_0) =r_{1\overline{1}} -\mathrm{Re}\,r_{11}(z_0) \end{aligned}$$
(4.8)

is positive for all \(z_0 \in \partial D\) if and only if \(\partial D\) is strictly convex; and is non-negative for all \(z_0\in \partial D\) if and only if \(\partial D\) is convex, respectively. Therefore, the proof of the proposition is complete. \(\square \)

Next we estimate \(\tilde{E}(r)\).

Proposition 4.2

With the notation above, for \(z\in \partial D\), we have

$$\begin{aligned} \tilde{E}(r)\ge & {} { |\partial r|^2 a^{k\overline{\ell }}[r]\over n (n+1)} \Big [\tilde{\Delta }r_{k\overline{\ell }}-a^{i\overline{q}}[r] r^{p\overline{j}} r_{i\overline{j}k} r_{p\overline{q}\overline{\ell }} - (\tilde{\Delta }r_k) (\tilde{\Delta }r_{\overline{\ell }}) - n {r^i r_{ik} r^{\overline{j}} r_{\overline{j}\overline{\ell }}\over |\partial r|_r^4}\Big ]\nonumber \\&-{2\mathrm{Re}\,r^k \tilde{\Delta }r_k \over (n+1) } \end{aligned}$$
(4.9)

and

$$\begin{aligned} \tilde{E}(r)\le {|\partial r|^2 a^{k\overline{\ell }} \over n (n+1)}\Big [\tilde{\Delta }r_{k\overline{\ell }}+a^{i\overline{q}}[r] r^p r^{\overline{j}}r_{i\overline{j}k}r_{p\overline{q}\overline{\ell }}+2 a^{i\overline{q}}[r] \, {r_{i k} r_{\overline{q}\overline{\ell }} \over |\partial r|^2} \Big ]\!-\!{2\mathrm{Re}\,r^k \tilde{\Delta }r_k \over (n+1) }.\nonumber \\ \end{aligned}$$
(4.10)

Proof

The following two identities will be used later.

$$\begin{aligned} (r^i)_{\overline{\ell }}= & {} (r^{i\overline{q}} r_{\overline{q}})_{\overline{\ell }}\!=\!r_{\overline{q}} (r^{i\overline{q}})_{\overline{\ell }}+r^{i\overline{q}} r_{\overline{q}\overline{\ell }}\!=\!-r^{i \overline{t}} r^{s\overline{q}} r_{s \overline{t}\overline{\ell }} r_{\overline{q}}+r^{i \overline{q}} r_{\overline{q}\overline{\ell }}\\= & {} -r^{i\overline{t}} r^s r_{s\overline{t}\overline{\ell }}+r^{i\overline{q}} r_{\overline{q}\overline{\ell }} \end{aligned}$$

and

$$\begin{aligned} (r^{\overline{j}})_{\overline{\ell }}=(r^{p \overline{j}} r_p)_{\overline{\ell }}=-r^{\overline{q}} r^{i\overline{j}} r_{i \overline{q}\overline{\ell }}+\delta _{j\ell }. \end{aligned}$$

By (4.3) and (4.2), for \(z\in \partial D\), one has

$$\begin{aligned} {\partial ^2 \log J(r)\over \partial z_k \partial \overline{z}_{\ell }}= & {} \left( r^{i\overline{j}} -{r^i r^{\overline{j}}\over |\partial r|_r^2} \right) r_{i\overline{j}k\overline{\ell }} +r_{i\overline{j}k}{\partial \over \partial \overline{z}_\ell } \left( r^{i\overline{j}}-{r^i r^{\overline{j}}\over -r +|\partial r|^2_r}\right) \\&+{\partial \over \partial \overline{z}_\ell }{r^i r_{ik}\over (-r+|\partial r|_r^2)}\\= & {} \tilde{\Delta }r_{ k\overline{\ell }} -r_{i\overline{j}k} r^{i\overline{q}} r^{p\overline{j}} r_{p\overline{q}\overline{\ell }}\\&+{1\over (|\partial r|_r^2)^2} (r_{i\overline{j}k}r^i r^{\overline{j}} -r^i r_{ik})\left( {\partial (-r +|\partial r|_r^2) \over \partial \overline{z}_\ell }\right) \\&-{r_{i\overline{j}k}\over |\partial r|^2_r} (r^i (r^{\overline{j}})_{\overline{\ell }} +r^{\overline{j}} (r^i)_{\overline{\ell }})+ {1\over |\partial r|^2} (r^i r_{ik\overline{\ell }}+ r_{ik} (r^i)_{\overline{\ell }})\\= & {} \tilde{\Delta }r_{ k\overline{\ell }} -r_{i\overline{j}k} r^{i\overline{q}} r^{p\overline{j}} r_{p\overline{q}\overline{\ell }}\\&+{1\over (|\partial r|_r^2)^2} (r_{i\overline{j}k}r^i r^{\overline{j}} -r^i r_{ik})( -r ^{ \overline{q}} r^{p} r_{p\overline{q}\overline{\ell }} + r^{\overline{q}} r_{\overline{q}\overline{\ell }} )\\&-{r_{i\overline{j}k}\over |\partial r|^2_r} \Big ( r^{\overline{j}}( -r^{i\overline{t}} r^s r_{s\overline{t}\overline{\ell }}+r^{i\overline{q}} r_{\overline{q}\overline{\ell }}) +r^i (-r^{\overline{q}} r^{p\overline{j}} r_{p \overline{q}\overline{\ell }}+\delta _{j\ell })\Big )\\&+ {1\over |\partial r|^2} \Big (r^i r_{ik\overline{\ell }}+ r_{ik} (-r^{i\overline{t}} r^s r_{s\overline{t}\overline{\ell }}+r^{i\overline{q}} r_{\overline{q}\overline{\ell }})\Big )\\ \!= & {} \!\tilde{\Delta }r_{k\overline{\ell }}\!-\!r^{i\overline{q}} r^{p\overline{j}} r_{i\overline{j}k} r_{p\overline{q}\overline{\ell }} \!-\!{1\over (|\partial r|_r^2)^2} (r_{i\overline{j}k}r^i r^{\overline{j}} -r^i r_{ik})( r ^{ \overline{q}} r^{p} r_{p\overline{q}\overline{\ell }} - r^{\overline{q}} r_{\overline{q}\overline{\ell }} )\\&+{1 \over |\partial r|^2_r} (r^p r^{\overline{j}} r^{i\overline{q}} +r^i r^{\overline{q}} r^{p\overline{j}}) r_{p\overline{q}\overline{\ell }}r_{i\overline{j}k}-{1\over |\partial r|_r^2} r^{\overline{j}} r^{i\overline{q}} r_{\overline{q}\overline{\ell }}r_{i\overline{j}k} -{r_{i\overline{\ell }k}\over |\partial r|_r^2} r^i\\&+ {1\over |\partial r|^2} \Big (r^i r_{ik\overline{\ell }}-r^{i\overline{t}} r^s r_{s\overline{t}\overline{\ell }} r_{ik} +r^{i\overline{q}} r_{\overline{q}\overline{\ell }} r_{ik}\Big )\\= & {} \tilde{\Delta }r_{k\overline{\ell }}-r^{i\overline{q}} r^{p\overline{j}} r_{i\overline{j}k} r_{p\overline{q}\overline{\ell }} -{r^i r^{\overline{j}} r^p r^{\overline{q}} \over |\partial r|_r^4} r_{i\overline{j}k} r_{p\overline{q}\overline{\ell }} +{1\over |\partial r|_r^4}(r^i r^{\overline{j}} r_{i\overline{j}k} r^{\overline{q}} r_{\overline{q}\overline{\ell }} \nonumber \\&+r^p r^{\overline{q}} r_{p\overline{q}\overline{\ell }} r^i r_{ik}) \\&+{1 \over |\partial r|^2_r} (r^p r^{\overline{j}} r^{i\overline{q}} +r^i r^{\overline{q}} r^{p\overline{j}}) r_{p\overline{q}\overline{\ell }}r_{i\overline{j}k}\\&- {1\over |\partial r_r^2} ( r^i r^{p\overline{j}} r_{pk} r_{i\overline{j}\overline{\ell }} +r^{\overline{j}} r^{i\overline{q}} r_{\overline{q}\overline{\ell }} r_{i\overline{j}k} ) +{1\over |\partial r|_r^2} \left( r^{i\overline{q}} -{r^i r^{\overline{q}}\over |\partial r|_r^2}\right) r_{\overline{q}\overline{\ell }} r_{ik} \\= & {} \tilde{\Delta }r_{k\overline{\ell }}-\left( r^{i\overline{q}}-{r^i r^{\overline{q}}\over |\partial r|_r^2}\right) \left( r^{p\overline{j}} -{r^p r^{\overline{j}}\over |\partial r|_r^2}\right) r_{i\overline{j}k} r_{p\overline{q}\overline{\ell }} \\&- {1\over |\partial r|_r^2} \left( r^i \left( r^{p\overline{j}} -{r^p r^{\overline{j}}\over |\partial r|_r^2} \right) r_{pk} r_{i\overline{j}\overline{\ell }} +r^{\overline{j}} \left( r^{i\overline{q}} -{r^i r^{\overline{q}}\over |\partial r|_r^2}\right) r_{\overline{q}\overline{\ell }} r_{i\overline{j}k} \right) \nonumber \\&+{1\over |\partial r|_r^2} \left( r^{i\overline{q}} -{r^i r^{\overline{q}}\over |\partial r|_r^2}\right) r_{\overline{q}\overline{\ell }} r_{ik}. \end{aligned}$$

Then for \(z\in \partial D\), we have

$$\begin{aligned} \tilde{\Delta }\log J(r)(z)\ge & {} a^{k\overline{\ell }}[r]\tilde{\Delta }r_{k\overline{\ell }}-a^{k\overline{\ell }}[r] a^{i\overline{q}}[r] a^{p\overline{j}}[r] r_{i\overline{j}k} r_{p\overline{q}\overline{\ell }} \\&-a^{k\overline{\ell }}[r] {a^{i\overline{q}}[r] \over |\partial r|^2_r} \Big ( r^{\overline{j}} r_{i\overline{j}k} r^p r_{p\overline{q}\overline{\ell }} +r_{ki} r_{\overline{q}\overline{\ell }}\Big ) +{1\over |\partial r|_r^2} a^{k\overline{\ell }}[r] a^{i\overline{q}}[r] r_{\overline{q}\overline{\ell }} r_{ik} \\= & {} a^{k\overline{\ell }}\tilde{\Delta }r_{k\overline{\ell }}-a^{k \overline{\ell }}[r] a^{i\overline{q}}[r] \, r^{p\overline{j}} r_{i\overline{j}k} r_{p\overline{q}\overline{\ell }} \end{aligned}$$

and

$$\begin{aligned} \tilde{\Delta }\log J(r)(z)\le & {} a^{k\overline{\ell }}\tilde{\Delta }r_{k\overline{\ell }}+2a^{k \overline{\ell }}[r] a^{i\overline{q}}[r] \, {r_{i k} r_{\overline{q}\overline{\ell }} \over |\partial r|^2} +a^{k\overline{\ell }}[r] a^{i\overline{q}}[r] r^p r^{\overline{j}} r_{i\overline{j}k} r_{p\overline{q}\overline{\ell }}. \end{aligned}$$

Moreover,

$$\begin{aligned} |\tilde{\nabla }\log J(r)|^2= & {} a^{k\overline{\ell }}[r]\, \left( \tilde{\Delta }r_k +{r^i r_{ik}\over |\partial r|_r^2}\right) \left( \tilde{\Delta }r_{\overline{\ell }}+{r^{\overline{j}} r_{\overline{j}\overline{\ell }}\over |\partial r|_r^2}\right) \\= & {} a^{k\overline{\ell }}[r]\, \Big [(\tilde{\Delta }r_k) (\tilde{\Delta }r_{\overline{\ell }}) +(\tilde{\Delta }r_k)\left( {r^{\overline{j}} r_{\overline{j}\overline{\ell }}\over |\partial r|_r^2}\right) +{r^i r_{ik}\over |\partial r|_r^2} \tilde{\Delta }r_{\overline{\ell }}+{r^i r_{ik}\over |\partial r|_r^2} {r^{\overline{j}} r_{\overline{j}\overline{\ell }}\over |\partial r|_r^2}\Big ]\\\le & {} a^{k\overline{\ell }}[r]\, \Big [{n+1\over n} (\tilde{\Delta }r_k) (\tilde{\Delta }r_{\overline{\ell }}) +(n+1){r^i r_{ik}\over |\partial r|_r^2} {r^{\overline{j}} r_{\overline{j}\overline{\ell }}\over |\partial r|_r^2}\Big ]. \end{aligned}$$

Therefore,

$$\begin{aligned} \tilde{\Delta }\log J(r)- & {} {n\over n+1} |\tilde{\nabla }\log J|^2 \ge a^{k\overline{\ell }}[r]\Big (\tilde{\Delta }r_{k\overline{\ell }}-a^{i\overline{q}}[r] r^{p\overline{j}} r_{i\overline{j}k} r_{p\overline{q}\overline{\ell }} \Big ) \nonumber \\- & {} a^{k\overline{\ell }}[r]\Big ( (\tilde{\Delta }r_k) (\tilde{\Delta }r_{\overline{\ell }}) +n {r^i r_{ik}\over |\partial r|_r^2} {r^{\overline{j}} r_{\overline{j}\overline{\ell }}\over |\partial r|_r^2}\Big ). \end{aligned}$$

Therefore,

$$\begin{aligned} \tilde{E}(r)\ge & {} { |\partial r|^2 a^{k\overline{\ell }}[r]\over n (n+1)}\Big (\tilde{\Delta }r_{k\overline{\ell }}-a^{i\overline{q}}[r] r^{p\overline{j}} r_{i\overline{j}k} r_{p\overline{q}\overline{\ell }} - (\tilde{\Delta }r_k) (\tilde{\Delta }r_{\overline{\ell }}) -n {r^i r_{ik}\over |\partial r|_r^2} {r^{\overline{j}} r_{\overline{j}\overline{\ell }}\over |\partial r|_r^2}\Big )\\&-{2\mathrm{Re}\,r^k \tilde{\Delta }r_k \over (n+1) } \end{aligned}$$

and

$$\begin{aligned} \tilde{E}(r)\le {|\partial r|^2 a^{k\overline{\ell }}[r] \over n (n+1)}\Big [\tilde{\Delta }r_{k\overline{\ell }}+ a^{i\overline{q}} r^p r^{\overline{j}} r_{i\overline{j}k} r_{p\overline{q}\overline{\ell }}+ 2a^{i\overline{q}}[r] \, {r_{i k} r_{\overline{q}\overline{\ell }} \over |\partial r|^2} \Big ]-{2\mathrm{Re}\,r^k \tilde{\Delta }r_k \over (n+1) } \end{aligned}$$

Therefore, the proof of the proposition is complete. \(\square \)

Corollary 4.3

Let D be smoothly bounded convex domain in \({\mathbb {C}}^n\). If there is a strictly plurisubharmonic defining function \(r\in C^4(\overline{D})\) such that

$$\begin{aligned}&{n-1\over n+1}+ { |\partial r|^2 a^{k\overline{\ell }}[r]\over n (n+1)}\Big (\tilde{\Delta }r_{k\overline{\ell }}-a^{i\overline{q}}[r] r^{p\overline{j}} r_{i\overline{j}k} r_{p\overline{q}\overline{\ell }} - (\tilde{\Delta }r_k) (\tilde{\Delta }r_{\overline{\ell }}) \Big )\nonumber \\&\quad -{2\mathrm{Re}\,r^k \tilde{\Delta }r_k \over (n+1) } >0 \hbox { on }\ \partial D, \end{aligned}$$
(4.11)

then D is strictly super-pseudoconvex.

Proof

If \(\partial D\) is convex then for any strictly plurisubharmonic defining function \(r\in C^4(\overline{D})\), we have

$$\begin{aligned} {2\over n+1}-{2\over n+1}\mathrm{Re}\,{ r^k r^i r_{ik}\over |\partial r|^2} - {a^{k\overline{\ell }}[r] r^i r_{ik} r^{\overline{j}} r_{\overline{j}\overline{\ell }}\over (n+1) |\partial r|_r^2}\ge 0 \quad \hbox {on }\ \partial D. \end{aligned}$$
(4.12)

Since

$$\begin{aligned} \tilde{E}(r)+ & {} {1\over n+1} a^{k\overline{\ell }}[r] r^i r_{ik} r^{\overline{j}} r_{\overline{j}\overline{\ell }} = { |\partial r|^2 a^{k\overline{\ell }}[r] \over n (n+1)}\nonumber \\\times & {} \Big (\tilde{\Delta }r_{k\overline{\ell }}-a^{i\overline{q}}[r] r^{p\overline{j}} r_{i\overline{j}k} r_{p\overline{q}\overline{\ell }} - (\tilde{\Delta }r_k) (\tilde{\Delta }r_{\overline{\ell }}) \Big ) \quad -{2\mathrm{Re}\,r^k \tilde{\Delta }r_k \over (n+1) } \end{aligned}$$

and \(1-{2\over n+1}={n-1\over n+1}\), by (4.5), (4.11) and (4.12), we have \(\det H(\rho )>0\) on \(\partial D\). This implies \(\rho \) is strictly plurisubharmonic on \(\overline{D}\) by Lemma 2 in [20]. This proves Parts (i) and (ii) in Theorem 1.4. \(\square \)

5 Examples

In this section, we will provide two examples in \({\mathbb {C}}^2\) which give the proof of Part (iii) of Theorem 1.4.

For \(\delta =4^{-12}\), we let

$$\begin{aligned} g(t)=:g_{\delta } (t)=: \left\{ \begin{array}{l@{\quad }l} e^{-{\delta \over \delta -t}}, &{} \hbox { if } t<\delta ,\\ 0,&{} \hbox { if } t \ge \delta .\\ \end{array}\right. \end{aligned}$$
(5.1)

Let

$$\begin{aligned} r(z)=-2\mathrm{Re}\,z_2+|z|^2-8 |z_1|^4 g(|z_1|^2),\quad z=(z_1, z_2)\in {\mathbb {C}}^2. \end{aligned}$$
(5.2)

Example 1

Let \(D=\{z\in {\mathbb {C}}^2: r(z)<0\}\). Then

  1. (i)

    D is strictly convex.

  2. (ii)

    If \(\rho _D\) the solution of Fefferman equation (2), then \(\rho _D\) is not plurisubharmonic in D.

Proof

Since

$$\begin{aligned} {\partial |z_1|^4 g(|z_1|^2)\over \partial x_1}= & {} 4|z_1|^2 x_1 g(|z_1|^2)+|z_1|^4 g'(|z_1|^2) 2x_1,\\ {\partial |z_1|^4 g(|z_1|^2)\over \partial y_1}= & {} 4|z_1|^2 y_1 g(|z_1|^2)+|z_1|^4 g'(|z_1|^2) 2y_1,\\ {\partial ^2 \, |z_1|^4 g(|z_1|^2)\over \partial x_1^2 }= & {} 16 |z_1|^2 x_1^2 g'(|z_1|^2) +2|z_1|^4 g'(|z_1|^2)+ 4(|z_1|^2 +2 x_1^2) g(|z_1|^2) \\&+ 4|z_1|^4 g''(|z_1|^2) x_1^2,\\ {\partial |z_1|^4 g(|z_1|)\over \partial y_1^2}= & {} 16 |z_1|^2 y_1^2 g'(|z_1|^2) +2|z_1|^4 g'(|z_1|^2)+ 4(|z_1|^2 +2 y_1^2) g(|z_1|^2)\\&+ 4|z_1|^4 g''(|z_1|^2) y_1^2,\\ {\partial ^2 (|z_1|^4 g(|z_1|^2)\over \partial x_1 \partial y_1}= & {} {\partial (4|z_1|^2 x_1 g(|z_1|^2)+|z_1|^4 g'(|z_1|^2) 2x_1)\over \partial y_1}\\= & {} 8 x_1y_1 g(|z_1|^2)+16|z_1|^2 x_1 y_1 g'(|z_1|^2)+4|z_1|^4x_1 y_1 g''(|z_1|^2); \end{aligned}$$

and since

$$\begin{aligned} 20 t^2 |g'(t)|+12 t g(t)+4t^3 |g''(t)|= & {} 4t g(t) \left[ 3 +5 {t \delta \over (\delta -t)^2}+{t^2 (\delta ^2+2\delta (\delta -t))\over (\delta -t)^4}\right] \\\le & {} 4t g(t) \left[ {11\delta ^4\over (\delta -t)^4}\right] \\\le & {} 4^7 \delta \\\le & {} 4^{-5}, \end{aligned}$$

we have

$$\begin{aligned}&18|z_1|^4|g'(|z_1|^2)|+12|z_1|^2 g(|z_1|^2)+4|z_1|^6 |g''(|z_1|^2)|\le {1/4},\\&\Big |{\partial (|z_1|^4 g(|z_1|^2)\over \partial x_1^2}\Big |<1/4,\\&\Big |{\partial (|z_1|^4 g(|z_1|^2)\over \partial y_1^2}\Big |<1/4 \end{aligned}$$

and

$$\begin{aligned} \Big |{\partial (|z_1|^4 g(|z_1|^2)\over \partial x_1\partial y_1}\Big |<1/2. \end{aligned}$$

Therefore, \( D^2 r(z)=2I_n+D^2 (|z_1|^4 g(|z_1|^2))\) is positive definite in \({\mathbb {R}}^4\). Therefore, D is strictly convex. Moreover, \(H(r)(0)=I_2\). We claim that

$$\begin{aligned} \det H(\rho _D)(0)<0. \end{aligned}$$

Since, at \(z=0\), we have

$$\begin{aligned} {\partial r\over \partial z_2}=-1,\quad r_{kj}(0)=r_{i\overline{j}k}(0)=0,\quad 1\le i,j,k\le 2 \end{aligned}$$

By (4.3). This implies \({\partial \log J(r )\over \partial z_j}(0)=0\) for all \(1\le j\le 2\). By (4.6) and (4.10), we have

$$\begin{aligned} r_{1\overline{1}1\overline{1}}(0)=-32e^{-1},\quad \tilde{E}(r)(0)={|\partial r|^2 \over 6 } r_{1\overline{1} 1\overline{1}}(0)=-{32\over 6} e^{-1} \end{aligned}$$

Thus,

$$\begin{aligned} \det H(\rho _D) J(r)^{2/3} =1-{2\over 3}-{32\over 6 e}<0. \end{aligned}$$

This completes the proof of the statement in the example. \(\square \)

Example 2

For \(n\ge 2, \alpha =21/20\) and \(0<C\le (9-8\alpha )(1+\alpha )/256\), we let \(r(z)=|z|^2+2\mathrm{Re}\,z_n +\alpha \mathrm{Re}\,\sum _{j=1}^n z_j^2 +C\sum _{j=1}^n |z_j|^4\) and let

$$\begin{aligned} D=\{z\in {\mathbb {C}}^n: r(z)<0\} \end{aligned}$$

Then D is super-pseudoconvex, but D is not convex.

Proof

At \(z=(0,0,\ldots , 0)\in \partial D\), we have that \({\partial \over \partial x_j}, {\partial \over \partial y_j}\) and \({\partial \over \partial y_n}\) are tangent vectors to \(\partial D\) for \(1\le j\le n-1\). Notice that

$$\begin{aligned} {\partial ^2 r\over \partial y_n^2}=2-2\alpha =-2(\alpha -1)<0, \end{aligned}$$

one can easily see that \(\partial D\) not convex at \(z=0\). Thus, \(\partial D\) is not convex. However,

$$\begin{aligned} H(r)=I_n+4C\hbox {Diag}(|z_1|^2,\ldots , |z_n|^2), \end{aligned}$$

where \(\hbox {Diag}(|z_1|^2,\ldots , |z_n|^2)\) is a diagonal matrix with diagonal entries \(|z_1|^2,\ldots , |z_n|^2\), respectively. Then

$$\begin{aligned} {\partial ^2 r \over \partial z_i \partial \overline{z}_j \partial z_k \partial \overline{z}_\ell }(z)= & {} 4C \delta _{ij} \delta _{k\ell }\delta _{ik},\quad {\partial ^3 r\over \partial z_k \partial \overline{z}_\ell \partial z_j}=4C\delta _{k\ell } \delta _{kj} \overline{z}_j,\\&{\partial ^2 r\over \partial z_i \partial z_j}=( \alpha +2C \overline{z}_j^2) \delta _{ij}. \end{aligned}$$

For each i

$$\begin{aligned} r^i={r_{\overline{i}}\over 1+4C|z_i|^2},\quad |\partial r|_r^2=r^i r_i=\sum _{i=1}^n {|r_i|^2\over 1+4C|z_i|^2} \end{aligned}$$

and, on \(\partial D\), we have

$$\begin{aligned} \tilde{\Delta }=\sum _{i, j=1}^n \left( {\delta _{ij}\over 1+4C|z_j|^2}-{r_{\overline{i}} r_j\over (1+4C|z_i|^2)(1+4C|z_j|^2) |\partial r|_r^2}\right) {\partial ^2 \over \partial z_i \partial \overline{z}_j}. \end{aligned}$$

Notice that if \(z\in D\), then

$$\begin{aligned} 2x_n+(1+\alpha )\sum _{j=1}^n x_j^2+(1-\alpha )\sum _{j=1}^n y_j^2+C\sum (x_j^2+y_j^2)^2<0. \end{aligned}$$

This implies that

$$\begin{aligned} 2x_n+(1+\alpha ) x_n^2<0\iff -{2\over 1+\alpha } <x_n<0. \end{aligned}$$
(5.3)

Thus

$$\begin{aligned} 2x_n+(1+\alpha )x_n^2>{-1\over 1+\alpha } \quad \hbox {and } \ C|z_k|^4-(\alpha -1)|z_k|^2<{1\over 1+\alpha }. \end{aligned}$$
(5.4)

We claim that

$$\begin{aligned} 4C|z_k|^2 \le 1/8 \quad \hbox {if }\ 0<C\le {(9-8\alpha )(1+\alpha )\over 256},\quad 1<\alpha <9/8. \end{aligned}$$
(5.5)

Otherwise, \(4C|z_k|^2\ge 1/8\). Therefore, \( C|z_k|^4-(\alpha -1)|z_k|^2<{1\over 1+\alpha } \) implies

$$\begin{aligned} |z_k|^2<{8 \over (1+\alpha )(9-8\alpha )}. \end{aligned}$$

This is a contradiction with \(4C|z_k|\ge 1/8\). Therefore, the claim is true. Notice

$$\begin{aligned} a^{k\overline{\ell }}[r] r_{\overline{\ell }}=0, \quad \hbox { for all } 1\le k\le n, \end{aligned}$$

we have

$$\begin{aligned} \left( r^{k\overline{\ell }}-{r^k r^{\overline{\ell }}\over |\partial r|^2}\right) \left( r^i r_{ik} r^{\overline{j}} r_{\overline{j}\overline{\ell }}\right)= & {} \left( r^{k\overline{\ell }}-{r^k r^{\overline{\ell }}\over |\partial r|^2}\right) r^k r^{\overline{\ell }} (\alpha +2C\overline{z}_k^2)(\alpha +2Cz_{\ell }^2)\\= & {} \left( r^{k\overline{\ell }}-{r^k r^{\overline{\ell }}\over |\partial r|^2}\right) r_k r_{\overline{\ell }} \left( \alpha +2C{\overline{z}_k^2-2\alpha |z_k|^2\over 1+4C|z_k|^2}\right) \\&\times \left( \alpha +2C{z_{\ell }^2-2\alpha |z_\ell |^2\over 1+4C|z_\ell |^2}\right) \\= & {} \left( r^{k\overline{\ell }}-{r^k r^{\overline{\ell }}\over |\partial r|^2}\right) r_k r_{\overline{\ell }}\alpha ^2 \\&+\,4C\alpha \mathrm{Re}\,\left( r^{k\overline{\ell }}-{r^k r^{\overline{\ell }}\over |\partial r|^2}\right) r_k r_{\overline{\ell }} {\overline{z}_k^2-2\alpha |z_k|^2\over 1+4C|z_k|^2}) \\&+\,4C^2 \left( r^{k\overline{\ell }}\!-\!{r^k r^{\overline{\ell }}\over |\partial r|^2}\right) r_k r_{\overline{\ell }} {(\overline{z}_k^2\!-\!2\alpha |z_k|^2) (z_{\ell }^2\!-\!2\alpha |z_{\ell }|^2)\over (1\!+\!4C|z_k|^2)(1\!+\!4C|z_{\ell }|^2)}\\\le & {} {4C^2 (2\alpha +1)^2 |z_k|^4\over (1+4C|z_k|^2)^2} r^{k\overline{k}} |r_k|^2\\\le & {} {(2\alpha +1)^2 \over 256}|\partial r|^2,\\ \left( r^{k\overline{\ell }} -{r^k r^{\overline{\ell }}\over |\partial r|_r^2}\right) \tilde{\Delta }r_{k\overline{\ell }}= & {} 4C\left( r^{k\overline{k}} -{r^k r^{\overline{k}}\over |\partial r|_r^2}\right) \tilde{\Delta }|z_k|^2=4C\left( r^{k\overline{k}} -{r^k r^{\overline{k}}\over |\partial r|_r^2}\right) ^2,\\ \tilde{\Delta }r_k= & {} 4C\left( r^{k\overline{k}}-{r^k r^{\overline{k}}\over |\partial r|^2}\right) \overline{z}_k \end{aligned}$$

and

$$\begin{aligned} r_{\overline{k}}=(1+2C|z_k|^2) z_k +2\alpha \overline{z}_k. \end{aligned}$$

Thus by (5.3)

$$\begin{aligned} \mathrm{Re}\,r^k \tilde{\Delta }r_k= & {} 4C\mathrm{Re}\,\left( r^{k\overline{k}}-{r^k r^{\overline{k}}\over |\partial r|^2}\right) r^k \overline{z}_k\\\le & {} 4C\left( r^{k\overline{k}}-{r^k r^{\overline{k}}\over |\partial r|^2}\right) r^{k\overline{k}} (1+2\alpha +2C|z_k|^2)|z_k|^2\\= & {} {4C|z_k|^2 (1+2\alpha +2C|z_k|^2) \over (1+4C|z_k|^2)^2} \le {2\alpha +1\over 8},\\ \left( r^{k\overline{\ell }}-{r^k r^{\overline{\ell }}\over |\partial r|^2}\right) \tilde{\Delta }r_k \tilde{\Delta }r_{\overline{\ell }}= & {} 16 C^2 \left( r^{k\overline{\ell }}-{r^k r^{\overline{\ell }}\over |\partial r|^2}\right) \overline{z}_k z_{\ell } \left( r^{k\overline{k}}-{r^k r^{\overline{k}}\over |\partial r|^2}\right) \left( r^{\ell \overline{\ell }}-{r^\ell r^{\overline{\ell }}\over |\partial r|^2}\right) \\\le & {} 16 C^2 r^{k\overline{\ell }}\overline{z}_k z_{\ell } \left( r^{k\overline{k}}-{r^k r^{\overline{k}}\over |\partial r|^2}\right) \left( r^{\ell \overline{\ell }}-{r^\ell r^{\overline{\ell }}\over |\partial r|^2}\right) \\\le & {} 4C {4C|z_k|^2 \over 1+4C|z_k|^2}\left( r^{k\overline{k}}-{r^k r^{\overline{k}}\over |\partial r|^2}\right) ^2 \end{aligned}$$

and

$$\begin{aligned} \left( r^{k\overline{\ell }}\!-\!{r^k r^{\overline{\ell }}\over |\partial r|^2}\right) \left( r^{i\overline{q}}\!-\!{r^i r^{\overline{q}}\over |\partial r|^2}\right) r^{p\overline{j}} r_{i\overline{j}k} r_{p\overline{q}\overline{\ell }} \!= & {} \!16C^2 \left( r^{k\overline{\ell }}\!-\!{r^k r^{\overline{\ell }}\over |\partial r|^2}\!\right) ^2 r^{\ell \overline{k}} \overline{z}_k \delta _{ik} \delta _{jk} z_{\ell } \delta _{p\ell } \delta _{q\ell }\\= & {} 16C^2 |z_k|^2 \left( r^{k\overline{k}}-{r^k r^{\overline{k}}\over |\partial r|^2}\right) ^2 r^{k \overline{k}} \\= & {} 4C {4C |z_k|^2 \over (1+4C|z_k|^2)} \left( r^{k\overline{k}}-{r^{kk} |r_k|^2\over |\partial r|^2}\right) ^2. \end{aligned}$$

Therefore, since (5.1), we have

$$\begin{aligned}&\left( r^{k\overline{\ell }} -{r^k r^{\overline{\ell }}\over |\partial r|_r^2}\right) \tilde{\Delta }r_{k\overline{\ell }} -\left( r^{k\overline{\ell }}-{r^k r^{\overline{\ell }}\over |\partial r|^2}\right) \left( r^{i\overline{q}}-{r^i r^{\overline{q}}\over |\partial r|^2}\right) r^{p\overline{j}} r_{i\overline{j}k} r_{p\overline{q}\overline{\ell }} \\&\qquad - 4C {4C|z_k|^2 \over 1+4C|z_k|^2}\left( r^{k\overline{k}}-{r^k r^{\overline{k}}\over |\partial r|^2}\right) ^2\\&\quad =4C\left( r^{k\overline{k}} -{r^k r^{\overline{k}}\over |\partial r|_r^2}\right) ^2-4C {4C |z_k|^2 \over (1+4C|z_k|^2)} \left( r^{k\overline{k}}-{r^{kk} |r_k|^2\over |\partial r|^2}\right) ^2\\&\qquad - 4C {4C|z_k|^2 \over 1+4C|z_k|^2}\left( r^{k\overline{k}}-{r^k r^{\overline{k}}\over |\partial r|^2}\right) ^2\\&\quad = 4C(1-2{4C|z_k|^2\over 1+4C|z_k|^2})\left( r^{k\overline{k}}-{r^k r^{\overline{k}} \over |\partial r|^2}\right) ^2\\&\quad \ge 0. \end{aligned}$$

Therefore,

$$\begin{aligned} \tilde{E}(r)\ge - {2\mathrm{Re}\,r^k \tilde{\Delta }r_k\over n+1}-a^{k\overline{\ell }}[r] {r^i r_{ik} r^{\overline{j}} r_{\overline{j}\overline{\ell }}\over (n+1)|\partial r|^2} \ge -{(1+2\alpha )\over 4(n+1)}-{(2\alpha +1)^2\over 256(n+1)} \end{aligned}$$

and

$$\begin{aligned} 1-{2\over n+1} \mathrm{Re}\,{r^i r^k r_{ik} \over |\partial r|^2} +\tilde{E}(r)\ge & {} 1-{2\over n+1}\mathrm{Re}\,{r^i r^i (\alpha +2C\overline{z}_i^2 )\over |\partial r|^2} -{(1+2\alpha )\over 4(n+1)}\\&-{(2\alpha +1)^2\over 256(n+1)} \\= & {} 1-{2 \over n+1}\mathrm{Re}\,{ r^ {i\overline{i}} r_i^2 r^{i\overline{i}} (\alpha +2C\overline{z}_i^2 )\over |\partial r|^2} -{(1+2\alpha )\over 4(n+1)}\\&-{(2\alpha +1)^2\over 256 (n+1)}\\\ge & {} 1-{2\alpha \over n+1} -{(1+2\alpha )\over 4(n+1)}-{(2\alpha +1)^2 \over 256(n+1)}\\> & {} 1-{10\alpha +1\over 4(n+1)}-{10 \over 256(n+1)}\\\ge & {} 1-{23\over 24}-{1\over 25}\\> & {} 0 \end{aligned}$$

if \(n\ge 2\) and \(\alpha \le 21/20\). Therefore, by (1.13) in Definition 1.1 and (4.5) and (4.6), D is strictly super-pseudoconvex and the proof is complete. \(\square \)