Skip to main content
Log in

Forced Burgers equation with sticky impulsion source

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

We consider the inviscid Burgers equation with force \(\partial _t u+\partial _x(u^2/2)=\nu \), where the discontinuities of initial datum \(u_0\) are interpreted as force sources. Thence, \(\nu \) is the force of shocks in a sticky dynamics of (paradoxically) non accelerated particles, whose the mass distribution field is \(\partial _xu\). The force has its own dynamics of density field \(\eta =u-w\) (the experienced impulsion), where w denotes the sticky particle velocity field. Along the sticky particle trajectory \(t\mapsto X_t\), the processes \(t\mapsto \eta (X_t,t),u(X_t,t),w(X_t,t)\) are backward martingales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atwell, J.A., King, B.B.: Stabilized finite element methods and feedback control for Burgers’ equation. In: Proceedings of the American Control Conference, pp. 2745–2749. (2000)

  2. Bateman, H.: Some recent researches on the motion of fluids. Mon. Weather Rev. 43, 163 (1915)

    Article  ADS  Google Scholar 

  3. Bec, J., Khanin, K.: Burgers turbulence. Phys. Rep. 447, 1–66 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bec, J., Frisch, U., Khanin, K.: Kicked Burgers turbulence. J. Fluid Mech. 416(11), 239–267 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bouchut, F., James, F.: Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness. Commun. PDE 24(11 & 12), 2173–2189 (1999)

    MathSciNet  Google Scholar 

  6. Bouchut, F., James, F.: Differentiability with respect to initial data for a scalar conservation law. In: International Series Num. Math, vol. 129, Birkhäuser, pp. 113–118. (1999)

  7. Burgers, J.M.: Mathematical examples illustrating relations occurring in the theory of turbulent fluid motion. Verhand. Kon. Neder. Akad. Wetenschappen, Afd. Natuurkunde, Eerste Sectie 17, 1–53 (1939)

    MathSciNet  Google Scholar 

  8. Burns, J.A., Balogh, A., Gilliam, D.S.: Numerical stationary solutions for a viscous Burgers’ equation. J. Math. Syst. 8(2), 1–16 (1999)

    MathSciNet  Google Scholar 

  9. Cole, J.: On a quasi-linear parabolic equation occurring in hydrodynamics. Q. Appl. Math. 9, 225–236 (1951)

    Article  Google Scholar 

  10. Das, A., Moser, R.D.: Optimal large-Eddy simulation of forced Burgers equation. Phys. Fluids 14, 4344 (2002)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  11. Ding, X., Jiu, Q., He, C.: On a nonhomogeneous Burgers’ equation. Sci. China Ser. A Math. 44(8), 984–993 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  12. Duben, P., Homeier, D., Jansen, K., Munster, G., Urbach, C.: Monte Carlo simulations of the randomly forced Burgers equation. EPL 84 (2008). https://iopscience.iop.org/article/10.1209/0295-5075/84/40002/pdf

  13. E, W., Khanin, K., Mazel, A., Sinai, Y.: Invariant measures for Burgers equation with stochastic forcing. Ann. Math. 151(3), 877–960 (2000)

    Article  MathSciNet  Google Scholar 

  14. Greenshields, B.D.: A study of traffic capacity. Highway Res. Board 14, 448–477 (1935)

    Google Scholar 

  15. Hopf, E.: The partial differential equation \(u_t+uu_x=\mu u_{xx}\). Comm. Pure Appl. Math. 3, 201–230 (1950)

    Article  MathSciNet  Google Scholar 

  16. Iyanda, F.K., Akandi, B.K., Muazu, N.: Numerical solution for nonlinear Burgers’ equation with source term. Am. Int. J. Sci. Eng. Res. 4(1), 53–65 (2021)

    Google Scholar 

  17. Karabutov, A.A., Lapshin, E.A., Rudenko, O.V.: Interaction between light waves and sound under acoustic nonlinearity conditions. J. Exp. Theor. Phys. 44, 58–63 (1976)

    ADS  Google Scholar 

  18. Leibig, M.: Pattern-formation characteristics of interacting kinematic waves. Phys. Rev. E 49, 184 (1994)

    Article  ADS  CAS  Google Scholar 

  19. Mittal, R.C., Kumar, S.: A numerical study of stationary solution of viscous Burgers’ equation using wavelet. Int. J. Comput. Math. 87, 1326–1337 (2010)

    Article  MathSciNet  Google Scholar 

  20. Mohamed, N.A.: Solving one- and two-dimensional unsteady Burgers’ equation using fully implicit finite difference schemes. Arab. J. Basic Appl. Sci. 26(1), 254–268 (2019). https://doi.org/10.1080/25765299.2019.1613746

    Article  MathSciNet  Google Scholar 

  21. Montecinos, G.I.: Analytic solutions for the Burgers equation with source terms. arXiv:1503.09079v1 (2015)

  22. Moreau, E., Vallee, O.: Connection between the Burgers’ equation with an elastic forcing term and a stochastic process. Phys. Rev. E 73(1), 016112 (2006)

  23. Moreau, E., Vallee, O.: The Burgers’ equation as electro-hydrodynamic model in plasma physics. arXiv:abs/physics/0501019 (2005)

  24. Moutsinga, O.: Burgers’ equation and the sticky particles model. J. Math. Phys. 53, 063709 (2012)

  25. Moutsinga, O.: Systems of sticky particles governed by Burgers’ equation. ISRN Math. Phys. 2012, 506863 (2012)

  26. Moutsinga, O.: Convex hulls, sticky particle dynamics and pressure-less gas system. Annales Mathématiques Blaise Pascal 15(1), 57–80 (2008)

    Article  MathSciNet  Google Scholar 

  27. Musha, T., Higuchi, H.: Traffic current fluctuation and the Burgers equation. Jpn. J. Appl. Phys. (1978). https://doi.org/10.1143/JJAP.17.811

    Article  Google Scholar 

  28. Rao, C.S., Yadav, M.K.: On the solution of a nonhomogeneous Burgers equation. Int. J. Nonlinear Sci. 10(2), 141–145 (2010)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Octave Moutsinga.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nzissila, F., Moutsinga, O. Forced Burgers equation with sticky impulsion source. Afr. Mat. 35, 11 (2024). https://doi.org/10.1007/s13370-023-01150-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13370-023-01150-9

Keywords

Mathematics Subject Classification

Navigation