Skip to main content
Log in

A Variation of uncertainty principles for the continuous wavelet transform connected with the Riemann–Liouville operator

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

The aim of this paper is to prove a generalization of uncertainty principles for the continuous wavelet transform connected with the Riemann–Liouville operator in \(L^p\)-norm. More precisely, we establish the Heisenberg–Pauli–Weyl uncertainty principle, Donoho–Stark’s uncertainty principles and local Cowling-Price’s type inequalities. Finally, Pitt’s inequality and Beckner’s uncertainty principle are proved for this transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Andrews, G., Askey, R., Roy, R.: Special Functions. Cambridge University Press, New York (1999)

    Book  MATH  Google Scholar 

  2. Baccar, C., Hamadi, N.B., Rachdi, L.T.: Inversion formulas for Riemann-Liouville transform and its dual associated with singular partial differential operators. Int. J. Math. Math. Sci. 2006, 1–26 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baccar, C., Hamadi, N.B., Rachdi, L.T.: Best approximation for Weierstrass transform connected with Riemann-Liouville operator. Commun. Math. Anal. 5(1), 65–83 (2008)

    MathSciNet  MATH  Google Scholar 

  4. Baccar, C., Rachdi, L.T.: Spaces of \(DL_p\) type and convolution product associated with the Riemann-Liouville operator. Bull. Math. Anal. Appl. 1(3), 16–41 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Beckner, W.: Pitt’s inequality and the uncertainty principle. Proc. Am. Math. Soc. 123(6), 1897–1905 (1995)

    MathSciNet  MATH  Google Scholar 

  6. Bonami, A., Demange, B., Jaming, P.: Hermite functions and uncertainty principles for the Fourier and the widowed Fourier transforms. Rev. Mat. Iberoamericana 19, 23–55 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cowling, M.G., Price, J.F.: Bandwidth versus time concentration: the Heisenberg-Pauli-Weyl inequality. SIAM J. Math. Anal. 15, 151–165 (1984)

    Article  MathSciNet  Google Scholar 

  8. Donoho, D.L., Strak, P.B.: Uncertainty principles and signal recovery. SIAM J. Appl. Math. 49(3), 906–931 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Faris, W.G.: Inequalities and uncertainty inequalities. Math. Phys. 19, 461–466 (1978)

    Article  Google Scholar 

  10. Ghobber, S.: Uncertainty principles involving \(L^1\)-norms for the Dunkl transform. Integral Transf. Spec. Funct. 24(6), 491–501 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ghobber, S.: Variations on uncertainty principles for integral operators. Appl. Anal. 93(5), 1057–1072 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ghobber, S., Omri, S.: Time-frequency concentration of the windowed Hankel transform. Integral Transf. Spec. Funct. 25, 481–496 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hardy, G.A.: Theorem concerning Fourier transforms. J. Lond. Math. Soc. 1, 227–231 (1933)

    Article  MathSciNet  MATH  Google Scholar 

  14. Heisenberg, W.: Über den anschaulichen inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43, 172–198 (1927)

    Article  MATH  Google Scholar 

  15. Hleili, Kh., Omri, S., Rachdi, L.T.: Uncertainty principle for the Riemann-Liouville operator. Cubo 13(03), 91–115 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hleili, K.: Uncertainty principles for spherical mean \(L^2\)-multiplier operators. J. Pseudo-Differ. Oper. Appl. 9(3), 573–587 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hleili, K.: Continuous wavelet transform and uncertainty principle related to the Weinstein operator. Integral Transf. Spec. Funct. 29(4), 252–268 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hleili, K.: Some results for the windowed Fourier transform related to the spherical mean operator. Acta Mathematica Vietnamica 46(1), 179–201 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hleili, K.: A variation on uncertainty principles for quaternion linear canonical transform. Adv. Appl. Cliff. Algebras 31(3), 1–13 (2021)

    MathSciNet  MATH  Google Scholar 

  20. Hleili, K.: Windowed linear canonical transform and its applications to the time-frequency analysis. J. Pseudo-Differ. Oper. Appl. 13(2), 1–26 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hleili, K.: A variety of uncertainty principles for the Hankel-Stockwell transform. Open J. Math. Anal. 5(1), 22–34 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hleili, K.: \(L^p\) uncertainty principles for the windowed spherical mean transform. Mem. Differ. Equ. Math. Phys. 85, 75–90 (2022)

    MathSciNet  MATH  Google Scholar 

  23. Laeng, E., Morpurgo, C.: An uncertainty inequality involving \(L^1\)-norms. Proc. Am. Math. Soc. 127(12), 3565–3572 (1999)

    Article  MATH  Google Scholar 

  24. Lebedev, N.N.: Special Functions and Their Applications. Dover publications, New York (1972)

    MATH  Google Scholar 

  25. Morpurgo, C.: Extremals of some uncertainty inequalities. Bull. Lond. Math. Soc. 33(1), 52–58 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Omri, S., Rachdi, L.T.: An \(L^p-L^q\) version of Morgan’s theorem associated with Riemann-Liouville transform. Int. J. Math. Anal. 1(17), 805–824 (2007)

    MathSciNet  MATH  Google Scholar 

  27. Omri, S.: Logarithmic uncertainty principle for the Hankel transform. Integral Transform. Spec. Funct. 22(9), 655–670 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Price, J.F.: Inequalities and local uncertainty principles. Math. Phys. 24, 1711–1714 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  29. Price, J.F.: Sharp local uncertainty principles. Stud. Math. 85, 37–45 (1987)

    Article  MATH  Google Scholar 

  30. Rachdi, L., Amri, B.: Beckner logaritmic uncertainty principle for the Riemann-Liouville. Int. J. Math. 24(9), 1350070 (2013)

    Article  MATH  Google Scholar 

  31. Rachdi, L.T., Herch, H.: Uncertainty principles for continuous wavelet transforms related to the Riemann-Liouville operator. Ricerche Mat. 66(2), 553–578 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Soltani, F.: \(L^p\) Donoho-Stark uncertainty principles for the Dunkl transform on \({\mathbb{R}}^d\). J. Phys. Math. 5(1), 4 (2014)

    MATH  Google Scholar 

  33. Soltani, F., Ghazwani, J.: A variation of the \(L^p\) uncertainty principles for the Fourier transform. Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 42(1), 10–24 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, London/New York (1966)

    MATH  Google Scholar 

  35. Wilczok, E.: New uncertainty principles for the continuous Gabor transform and the continuous wavelet transform. Doc. Math. 5, 201–226 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Hleili.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hleili, K. A Variation of uncertainty principles for the continuous wavelet transform connected with the Riemann–Liouville operator. Afr. Mat. 34, 84 (2023). https://doi.org/10.1007/s13370-023-01132-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13370-023-01132-x

Keywords

Mathematics Subject Classification

Navigation