Skip to main content
Log in

Some Results for the Windowed Fourier Transform Related to the Spherical Mean Operator

  • Published:
Acta Mathematica Vietnamica Aims and scope Submit manuscript

Abstract

We define and study the windowed Fourier transform associated with the spherical mean operator. We prove the boundedness and compactness of localization operators of this windowed. Next, we establish new uncertainty principles for the Fourier and the windowed Fourier transforms associated with the spherical mean operator. More precisely, we give a Shapiro-type uncertainty inequality for the Fourier transform that is, for s > 0 and {αk}k be an orthonormal sequence in L2(dνn+ 1)

$$ \sum\limits_{k=1}^{M}\left( \||(r,x)|^{s}\alpha_{k}\|^{2}_{2,\nu_{n+1}}+\||(\mu,\lambda)|^{s}\mathcal{\tilde{F}}(\alpha_{k})\|^{2}_{2,\nu_{n+1}}\right) \geqslant R_{n,s}M^{1+\frac{s}{2n+1}}. $$

Finally, we prove an analogous inequality for the windowed Fourier transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Andrews, G., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and its Applications, 71. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  2. Donoho, D.L., Stark, P.B.: Uncertainty principles and signal recovery. SIAM J. Appl. Math. 49(3), 906–931 (1989)

    Article  MathSciNet  Google Scholar 

  3. Fawcett, J.A.: Inversion of n-dimensional spherical means. SIAM J. Appl. Math. 45, 336–341 (1985)

    Article  MathSciNet  Google Scholar 

  4. Gabor, D.: Theory of communication. J. Inst. Electr. Eng. 93(26), 429–457 (1946)

    Google Scholar 

  5. Ghobber, S., Jaming, P.: Uncertainty principles for integral operators. Studia Math. 220, 197–220 (2014)

    Article  MathSciNet  Google Scholar 

  6. Gröchenig, K.H.: Foundations of time-frequency analysis. Applied and Numerical Harmonic Analysis. Birkhäuser Boston, Inc., Boston, MA (2001)

    Book  Google Scholar 

  7. Hellsten, H., Andersson, L.E.: An inverse method for the processing of synthetic aperture radar data. Inverse Problems 3(1), 111–124 (1987)

    Article  MathSciNet  Google Scholar 

  8. Herberthson, M.: A numerical implementation of an inverse formula for CARABAS raw data. Internal report D 30430-3.2. national defense research institute, FOA Box 1165; S-581 11 Linköping, Sweden (1986)

  9. Jaming, P., Powell, A.M.: Uncertainty principles for orthonormal sequences. J. Funct. Anal. 243, 611–630 (2007)

    Article  MathSciNet  Google Scholar 

  10. Jelassi, M., Rachdi, L.T.: On the range of the Fourier transform associated with the spherical mean operator. Fract. Calc. Appl. Anal. 7(4), 379–402 (2004)

    MathSciNet  MATH  Google Scholar 

  11. Lebedev, N.N.: Special Functions and Their Applications. Dover Publications, New York (1972)

    MATH  Google Scholar 

  12. Malinnikova, E.: Orthonormal sequences in L2(Rd) and time frequency localization. J. Fourier Anal. Appl. 16, 983–1006 (2010)

    Article  MathSciNet  Google Scholar 

  13. Msehli, N., Rachdi, L.T.: Heisenberg-Pauli-Weyl uncertainty principle for the spherical mean operator. Mediterr. J. Math. 7, 169–194 (2010)

    Article  MathSciNet  Google Scholar 

  14. Nessibi, M.M., Rachdi, L.T., Trimèche, K.: Ranges and inversion formulas for spherical mean operator and its dual. J. Math. Anal. Appl. 196(3), 861–884 (1995)

    Article  MathSciNet  Google Scholar 

  15. Rachdi, L.T., Trimèche, K.: Weyl transforms associated with the spherical mean operator. Anal. Appl. (Singap.) 1(2), 141–164 (2003)

    Article  MathSciNet  Google Scholar 

  16. Saitoh, S.: Theory of reproducing kernels and its applications. Pitman Research Notes in Mathematics Series, 189. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York (1988)

  17. Schuster, T.: The method of approximate inverse: theory and applications. Lecture Notes in Math., vol. 1906. Springer, Berlin (2007)

    Book  Google Scholar 

  18. Shapiro, H.S.: Uncertainty principles for bases in \(l^{2} \mathbb {R}\). In: Proceedings of the Conference on Harmonic Analysis and Number Theory. CIRM. Marseille-Luminy, pp 16–21 (2005)

  19. Trimèche, K.: Transformation intégrale de Weyl et théorème de Paley-Wiener associés à un opérateur différentiel singulier sur \((0,\infty )\). J. Math. Pures Appl. 60, 51–98 (1981)

    MathSciNet  MATH  Google Scholar 

  20. Trimèche, K.: Inversion of the Lions translation operator using genaralized wavelets. Appl. Comput. Harmonic Anal. 4, 97–112 (1977)

    Article  Google Scholar 

  21. Wang, L.V.: Photoacoustic imaging and spectroscopy. Optical science and engineering (Book 144) (2009)

  22. Zhao, J.: Localization operators associated with the sphercial mean operator. Anal. Theory Appl. 21(4), 317–325 (2005)

    Article  MathSciNet  Google Scholar 

  23. Zhao, J., Peng, L.: Wavelet and Weyl transforms associated with the spherical mean operator. Integral Equations Operator Theory 50, 279–290 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Hleili.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hleili, K. Some Results for the Windowed Fourier Transform Related to the Spherical Mean Operator. Acta Math Vietnam 46, 179–201 (2021). https://doi.org/10.1007/s40306-020-00382-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40306-020-00382-2

Keywords

Mathematics Subject Classification (2010)

Navigation