Skip to main content
Log in

Optimal searching path to find a hidden target in a bounded region

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

This paper addresses the problem of searching for a randomly located target in a bounded, known region by using two unit-speed searchers. The searching process starts at \((0,0)\). The area is divided into a finite set of cells. The position of the target has a symmetric probability distribution. It is desired to search in an optimal manner to minimize the expected time for detecting the target. The search strategy is derived using a dynamic programming algorithm. We present some special cases in which the cells are symmetric and asymmetric, and the algorithm depends on the dimensions of the search area. We give an illustrative example to demonstrate the applicability of this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Teamah, A., Abou Gabal, H., Afifi, W.: On the Coordinated search problem. Int. J. Appl. Math. 5, 627–636 (2007)

    MathSciNet  MATH  Google Scholar 

  2. Reyniers, D.: Coordinated search for an object on the line. Eur. J. Oper. Res. 95, 663–670 (1996)

    Article  MATH  Google Scholar 

  3. Reyniers, D.: Coordinated two searchers for an object hidden on an interval. J. Oper. Res. Soc. 46, 1386–1392 (1995)

    Article  MATH  Google Scholar 

  4. Thomas, L.: Finding your kids when they are lost. J. Oper. Res. Soc. 43, 637–639 (1992)

    Article  MATH  Google Scholar 

  5. Feinerman, O., Korman, A., Lotker, Z., Sereni, J.: Collaborative Search on the Plane without Communication, PODC ‘12 Proceedings of the 2012 ACM symposium on Principles of distributed computing, ACM New York, NY, USA, (2012) 77–86.

  6. Mohamed, A.A., Abou Gabal, H., El-Hadidy, M.: Coordinated search for a randomly located target on the plane. Eur. J. Pure Appl. Math. 2, 97–111 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Mohamed, A., Fergany, H., El-Hadidy, M.: On the coordinated search problem on the plane. Istan. Univ. J. Sch. Busin. Admin. 41, 80–102 (2012)

    Google Scholar 

  8. El-Hadidy, M.: Optimal spiral search plan for a randomly located target in the plane. Int. J. Oper. Res. 22(4), 454–465 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Beltagy, M., El-Hadidy, M.: Parabolic spiral search plan for a randomly located target in the plane. ISRN Math. Anal. (2013). https://doi.org/10.1155/2013/151598

    Article  MathSciNet  MATH  Google Scholar 

  10. Mohamed, A., El-Hadidy, M.: Coordinated search for a conditionally deterministic target motion in the plane. Eur. J. Math. Sci. 2(3), 272–295 (2013)

    Google Scholar 

  11. Alzulaibani, A., El-Hadidy, M.: Study on the finiteness of the first meeting time between n-dimensional Gaussian jump and Brownian diffusion particles in the fluid. Int. J. Modern Phys. B 33(28), 22 (2019)

    Article  Google Scholar 

  12. El-Hadidy, M.: Studying the finiteness of the first meeting time between Levy flight jump and Brownian particles in the fluid reactive anomalous transport. Modern Phys. Lett. B. 33(22), 8 (2019)

    Article  Google Scholar 

  13. El-Hadidy, M.: Study on the existence of tracking model for a D-dimensional random walk transportation radionuclides particle in a fractured medium. Int. J. Modern Phys. B. (2022). https://doi.org/10.1142/S021797922250031X

    Article  Google Scholar 

  14. El-Hadidy, M., Alzulaibani, A.: Existence of a linear flows particle tracking model with a stochastic waiting time depending on the Gaussian jump length. Modern Phys. Lett. B 35(26), 11 (2021)

    Article  MathSciNet  Google Scholar 

  15. El-Hadidy, M., Alzulaibani, A.: Study on the existence of the transportation particle tracking model in the interactive medium. Int. J. Modern Phys. B. 35(25), 12 (2021). https://doi.org/10.1142/S0217979221502568

    Article  MATH  Google Scholar 

  16. El-Hadidy, M., Abou-Gabal, H.: Searching for the Random Walking microorganism cells. Int. J. Biomath. 12(6), 12 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. El-Hadidy, M., Alzulaibani, A.: Cooperative search model for finding a Brownian target on the real line. J. Taibah Univ. Sci. 13(1), 177–183 (2019)

    Article  Google Scholar 

  18. El-Hadidy, M.: Generalized linear search plan for a D-dimensional random walk target. Int. J. Math. Oper. Res. 15(2), 211–241 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. El-Hadidy, M., Abou-Gabal, H.: Coordinated search for a random walk target motion. Fluct. Noise Lett. 17(1), 11 (2018)

    Article  Google Scholar 

  20. El-Hadidy, M., Alzulaibani, A.: A mathematical model for preventing HIV virus from proliferating inside CD4 T Brownian cell using Gaussian jump nanorobot. Int. J. Biomath. 12(7), 24 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Alzulaibani, A., El-Hadidy, M.: Analytical study of the first collision time finiteness between two randomly moving particles in a fractured medium. Mod. Phys. Lett. B 36(25), 2250143 (2022)

    Article  MathSciNet  Google Scholar 

  22. El-Hadidy, M., Alzulaibani, A.: An existential study of a tracking model for a two-dimensional Brownian particle on a planar surface. Mod. Phys. Lett. B 36(12), 2250024 (2022)

    Article  MathSciNet  Google Scholar 

  23. El-Hadidy, M., Fakharany, M.: Detection model with a maximum discounted effort reward search to maintenance a best decision under the quality control process. Stat. Opt. Inf. Comput. 10(3), 935–948 (2022). https://doi.org/10.19139/soic-2310-5070-1368

    Article  MathSciNet  Google Scholar 

  24. Stone, L.D.: Theory of Optimal Search, volume 118 of Mathematics in science and Engineering. Academic Press, New York, 1975.

  25. Dell, R., Eagle, J.: Using multiple searchers in constrainted-path, moving target search problems. Nav. Res. Logist. 43, 463–480 (1996)

    Article  MATH  Google Scholar 

  26. Hong, S., Cho, S., Park, M., Lee, M.: Optimal search-relocation trade-off in Markovian-target searching. Comp. Oper. Res. 36, 2097–2104 (2009)

    Article  MATH  Google Scholar 

  27. Hong, S., Cho, S., Park, M.: A pseudo-polynomial heuristic for path-constrained discrete-time Markovian-target search. Eur. J. Oper. Res. 193, 351–364 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Beck, A., Beck, M.: The Revenge of the linear search problem. SIAM J. Cont. Optim. 30, 112–122 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  29. Balkhi, Z.: The generalized linear search problem, existence of optimal search paths. J. Oper. Res. Soc. Japan. 30, 399–420 (1987)

    MathSciNet  MATH  Google Scholar 

  30. Balkhi, Z.: Generalized optimal search paths for continuous univariate random variable. Oper. Res. 23, 67–96 (1987)

    MathSciNet  MATH  Google Scholar 

  31. Mohamed, A.A.: Generalized search for one dimensional random walker. Int. J. Pure Appl. Math. 19, 375–387 (2005)

    MathSciNet  MATH  Google Scholar 

  32. Mohamed, A., Kassem, M., El-Hadidy, M.: Multiplicative linear search for a brownian target motion. Appl. Math. Model. 35, 4127–4139 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mohamed, A., El-Hadidy, M.: Optimal multiplicative generalized linear search Plan for a discrete random walker. J. Opt. (2013). https://doi.org/10.1155/2013/706176

    Article  MATH  Google Scholar 

  34. El-Rayes, A.B., Mohamed, A.A., Abou Gabal, H.M.: Linear search for a brownian target motion. Acta. Math. Sci. J. 23B, 321–327 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Washburn, A.R.: Search and detection, 2nd edn. Postgraduate School, Monterey (1989)

    Google Scholar 

  36. Stone, L.D.: Theory of optimal search. Academic Press, New York (1975)

    MATH  Google Scholar 

  37. El-Hadidy, M.: On probabilistic modeling and feasibility of collision between a randomly moving meteor and satellite. Afr. Mat. 32, 1–15 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  38. El-Hadidy, M., Abou Gabal, H.: On the linear cooperative search technique for a lost target with multiple searchers. Int. J. Math. Oper. Res. 21(2), 221–231 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  39. El-Hadidy, M., Alfreedi, A.: Detection of an appropriate pharmaceutical company to get a suitable vaccine against Covid-19 with minimum cost under the quality control process. Qual. Reliab. Eng. Int. 37(6), 2646–2664 (2021)

    Article  Google Scholar 

  40. El-Hadidy, M.: On the random search for a randomly moving particle. J. Taibah Univ. Sci. 16(1), 1165–1170 (2022)

    Article  Google Scholar 

  41. El-Hadidy, M.: Detection of the diffusion nanoparticle in the turbulent flows using the random walk model. Int. J. Oper. Res. 46(2), 251–270 (2023)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Abd Allah El-Hadidy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Theorem 1

If the target lies in any cell of \(\beta_{1}\), then \(t_{11} = 2\left( {b + \sqrt {a^{2} + b^{2} } } \right)\). In addition, when the target lies in any cell of \(\beta_{2}\), then \(t_{21} = 4\left( {b + \sqrt {a^{2} + b^{2} } } \right)\). And, if the target lies in any cell of \(\beta_{3}\), then \(t_{31} = 6\left( {b + \sqrt {a^{2} + b^{2} } } \right)\) and etc., until the searcher reaches the last path \(\beta_{m}\), then

$$\begin{aligned} t_{{m1}} & = ( h + \sqrt {a^{2} + (h - (m - 1)b)^{2} } + \sqrt {a^{2} + b^{2} } + ... + \sqrt {a^{2} + b^{2} } \\ & \quad+ \sqrt {b^{2} + (r - (m - 1)a)^{2} } + \sqrt {b^{2} + (r - (m - 1)a)^{2} } \\ & \quad+ \sqrt {a^{2} + b^{2} } + ... + \sqrt {a^{2} + b^{2} } + \sqrt {a^{2} + (h - (m - 1)b)^{2} } + h ) \\ & = 2\left( {h + \sqrt {a^{2} + (h - (m - 1)b)^{2} } + \sqrt {b^{2} + (r - (m - 1)a)^{2} } + (m - 2)\sqrt {a^{2} + b^{2} } } \right). \\ \end{aligned}$$

If the target lies in any cell of \(\Gamma_{1}\), then \(t_{12} = 2\left( {b + \sqrt {a^{2} + b^{2} } } \right)\). And, if the target lies in any cell of \(\Gamma_{2}\), then \(t_{22} = 4\left( {b + \sqrt {a^{2} + b^{2} } } \right)\). Also, if it lies in any cell of \(\Gamma_{3}\), then \(t_{32} = 6\left( {b + \sqrt {a^{2} + b^{2} } } \right)\) and etc., until the searcher reaches the last path \(\Gamma_{m}\), then

$$ t_{m2} = 2\left( {h + \sqrt {a^{2} + (h - (m - 1)b)^{2} } + \sqrt {b^{2} + (r - (m - 1)a)^{2} } + (m - 2)\sqrt {a^{2} + b^{2} } } \right). $$

Since the target has symmetric uniformly distribution in the known region which has area \(A\). Thus, the probability of detecting the target on any cell is \(\frac{ab}{A}\), where any rectangle cell has area \(ab\). Therefore,

$$ \begin{gathered} E(t(\varphi )) = 2\left( {b + \sqrt {a^{2} + b^{2} } } \right)\frac{2ab}{A} + 4\left( {b + \sqrt {a^{2} + b^{2} } } \right)\frac{4ab}{A} + 6\left( {b + \sqrt {a^{2} + b^{2} } } \right)\frac{6ab}{A} \hfill \\\qquad + 2\left( {h + \sqrt {a^{2} + (h - (m - 1)b)^{2} } + \sqrt {b^{2} + (r - (m - 1)a)^{2} } + (m - 2)\sqrt {a^{2} + b^{2} } } \right)\hfill \\ \qquad\times\left[ {\frac{a(h - (m - 1)b) + b(r - (m - 1)a) + (m - 2)ba}{A}} \right] \hfill \\ \qquad+ 2\left( {b + \sqrt {a^{2} + b^{2} } } \right)\frac{2ab}{A} + 4\left( {b + \sqrt {a^{2} + b^{2} } } \right)\frac{4ab}{A} + 6\left( {b + \sqrt {a^{2} + b^{2} } } \right)\frac{6ab}{A} \hfill \\ \qquad+ 2\left( {h + \sqrt {a^{2} + (h - (m - 1)b)^{2} } + \sqrt {b^{2} + (r - (m - 1)a)^{2} } + (m - 2)\sqrt {a^{2} + b^{2} } } \right)\hfill \\ \qquad\times\left[ {\frac{a(h - (m - 1)b) + b(r - (m - 1)a) + (m - 2)ba}{A}} \right] \hfill \\ \quad= \frac{8ab}{A}\left( {b + \sqrt {a^{2} + b^{2} } } \right) + \frac{32ab}{A}\left( {b + \sqrt {a^{2} + b^{2} } } \right) + \frac{72ab}{A}\left( {b + \sqrt {a^{2} + b^{2} } } \right) \hfill \\ \qquad+ \frac{128ab}{A}\left( {b + \sqrt {a^{2} + b^{2} } } \right) + 4\left[ {\frac{a(h - (m - 1)b) + b(r - (m - 1)a) + (m - 2)ba}{A}} \right]\hfill \\ \qquad\times\left( {h + \sqrt {a^{2} + (h - (m - 1)b)^{2} } + \sqrt {b^{2} + (r - (m - 1)a)^{2} } + (m - 2)\sqrt {a^{2} + b^{2} } } \right) \hfill \\ \end{gathered} $$

Consequently,

$$ \begin{gathered} E(t(\varphi )) = \frac{{8ab\left( {b + \sqrt {a^{2} + b^{2} } } \right)}}{A}\left[ {1 + 4 + 9 + 16 + 25 + ...} \right] \hfill \\ \qquad+ 4\left[ {\frac{a(h - (m - 1)b) + b(r - (m - 1)a) + (m - 2)ba}{A}} \right]\hfill \\ \qquad \times\left( {h + \sqrt {a^{2} + (h - (m - 1)b)^{2} } + \sqrt {b^{2} + (r - (m - 1)a)^{2} } + (m - 2)\sqrt {a^{2} + b^{2} } } \right) \hfill \\ \quad = \frac{1}{A}\Big( {8ab(b + \sqrt {a^{2} + b^{2} } )\sum\limits_{i = 1}^{m - 1} {i^{2} } } + 4[a(h - (m - 1)b) + b(r - (m - 1)a) + (m - 2)ba].\hfill \\ \qquad\times\left( {h + \sqrt {a^{2} + (h - (m - 1)b)^{2} } + (m - 2)\sqrt {a^{2} + b^{2} } + \sqrt {b^{2} + (r - (m - 1)a)^{2} } } \right). \hfill \\ \end{gathered} $$

Proof of Theorem 2

From (1),

\(E(t(\varphi )) = \frac{1}{A}\left( {8ab(b + \sqrt {a^{2} + b^{2} } )\sum\limits_{i = 1}^{m - 1} {i^{2} } } \right. + 4[a(h - (m - 1)b) + b(r - (m - 1)a) + (m - 2)ba].\left( {h + \sqrt {a^{2} + (h - (m - 1)b)^{2} } + (m - 2)\sqrt {a^{2} + b^{2} } + \sqrt {b^{2} + (r - (m - 1)a)^{2} } } \right)\) By differentiation with respect to \(a\),

$$ \begin{gathered} \frac{\partial E(t(\varphi ))}{{\partial a}} = \frac{1}{A}\left( \left( {8b(b + \sqrt {a^{2} + b^{2} } ) + \frac{{8a^{2} b}}{{\sqrt {a^{2} + b^{2} } }}} \right)\sum\limits_{i = 1}^{m - 1} {i^{2} } + 4[h - mb)].\right.\hfill \\ \qquad\times\left( {h + \sqrt {a^{2} + (h - (m - 1)b)^{2} } + (m - 2)\sqrt {a^{2} + b^{2} } + \sqrt {b^{2} + (r - (m - 1)a)^{2} } } \right) \hfill \\ \qquad+ 4[h - mb)].\left( {h + \sqrt {a^{2} + (h - (m - 1)b)^{2} } + (m - 2)\sqrt {a^{2} + b^{2} } + \sqrt {b^{2} + (r - (m - 1)a)^{2} } } \right) \hfill \\ \end{gathered} $$
(9.a)

By differentiation with respect to \(b\),

$$ \begin{gathered} \frac{\partial E(t(\varphi ))}{{\partial b}} = \frac{1}{A}\left( \left( {8a(b + \sqrt {a^{2} + b^{2} } ) + 8ab\left( {1 + \frac{b}{{\sqrt {a^{2} + b^{2} } }}} \right)} \right)\sum\limits_{i = 1}^{m - 1} {i^{2} } + 4[r - ma)].\right. \hfill \\ \quad\times\left( {h + \sqrt {a^{2} + (h - (m - 1)b)^{2} } + (m - 2)\sqrt {a^{2} + b^{2} } + \sqrt {b^{2} + (r - (m - 1)a)^{2} } } \right) \hfill \\ \quad+ 4[r - ma)].\left( {h + \sqrt {a^{2} + (h - (m - 1)b)^{2} } + (m - 2)\sqrt {a^{2} + b^{2} } + \sqrt {b^{2} + (r - (m - 1)a)^{2} } } \right) \hfill \\ \end{gathered} $$
(9.b)

From (9.a) and (9.b) we have,

$$ \begin{gathered} \frac{{b\left( {a^{2} + b^{2} \sqrt {a^{2} + b^{2} } + b\left( {a^{2} + b^{2} } \right)} \right)m(m - 1)(2m - 1)}}{{3\sqrt {a^{2} + b^{2} } }} \hfill \\ \quad+ \left[ {a(h - (m - 1)b) + b( - a(m - 1) + r) + (m - 2)ba} \right].\hfill \\ \quad\times\left( {\frac{a}{{\sqrt {a^{2} + (h - (m - 1)b)^{2} } }} + \frac{(m - 2)a}{{\sqrt {a^{2} + b^{2} } }} + \frac{(r - (m - 1)a)(1 - m)}{{\sqrt {b^{2} + (r - (m - 1)a)^{2} } }}} \right) \hfill \\ \quad+ [h - mb)].\left( {h + \sqrt {a^{2} + (h - (m - 1)b)^{2} } + (m - 2)\sqrt {a^{2} + b^{2} } + \sqrt {b^{2} + (r - (m - 1)a)^{2} } } \right) \hfill \\ \quad- \frac{{(ab^{2} + 2ab\sqrt {a^{2} + b^{2} } + a(a^{2} + b^{2} ))m(m - 1)(2m - 1)}}{{3\sqrt {a^{2} + b^{2} } }} \hfill \\\quad - [a(h - (m - 1)b) + b(r - (m - 1)a) + (m - 2)ba].\hfill \\ \quad\times\left( {\frac{(h - (m - 1)b)(1 - m)}{{\sqrt {a^{2} + (h - (m - 1)b)^{2} } }} + \frac{(m - 2)b}{{\sqrt {a^{2} + b^{2} } }} + \frac{b}{{\sqrt {b^{2} + (r - (m - 1)a)^{2} } }}} \right) \hfill \\ \quad+ [r - ma)].\left( {h + \sqrt {a^{2} + (h - (m - 1)b)^{2} } + (m - 2)\sqrt {a^{2} + b^{2} } + \sqrt {b^{2} + (r - (m - 1)a)^{2} } } \right) = 0. \hfill \\ \end{gathered} $$

This leads to,

$$ \begin{gathered} \frac{{m(m - 1)(2m - 1)\left( {\left( {ab(a - b} \right) + (1 - 2a)b\sqrt {a^{2} + b^{2} } + (b^{2} - a)(a^{2} + b^{2} ) + b^{3} } \right)}}{{3\sqrt {a^{2} + b^{2} } }} \hfill \\ + [r - ma)].\left( {h + \sqrt {a^{2} + (h - (m - 1)b)^{2} } + (m - 2)\sqrt {a^{2} + b^{2} } + \sqrt {b^{2} + (r - (m - 1)a)^{2} } } \right) = 0. \hfill \\ + (h - mb)(r - ma)\left( {h + \sqrt {a^{2} + (h - b(m - 1))^{2} } + (m - 2)\left( {\sqrt {a^{2} + b^{2} } } \right) + \sqrt {b^{2} + (r - a(m - 1))^{2} } } \right) = 0. \hfill \\ \end{gathered} $$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Hadidy, M.A.A. Optimal searching path to find a hidden target in a bounded region. Afr. Mat. 34, 64 (2023). https://doi.org/10.1007/s13370-023-01104-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13370-023-01104-1

Keywords

Mathematics Subject Classification

Navigation