Skip to main content

Advertisement

Log in

Inference for generalized inverse Lindley distribution based on generalized order statistics

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

This article addresses the problem of deriving the explicit expressions for single and product moments of order statistics, generalized order statistics and dual generalized order statistics from the generalized Lindley distribution. The means and variances of order statistics, lower record values and progressively type-II censored order statistics for various values of the parameters are tabulated. Furthermore, the maximum likelihood estimators for the parameters of the model using generalized order statistics are obtained. The Bayes estimators under squared error and LINEX (Linear exponential) loss functions using Markov Chain Monte Carlo (MCMC) technique are obtained. Finally, three real data examples to lower record values, type-II censored and progressively type-II censored order statistics have been analyzed for illustrative purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aboeleneen, Z.A.: Inference forWeibull distribution under generalized order statistics. Math. Comput. Simul. 81, 26–36 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abu Elfotouh, S., Nassar, M.M.A.: Estimation for the parameters of the Weibull extension model based on generalized order statistics. Int. J. Contemp. Mathe. Sci. 6, 1749–1760 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Arnold, B.C., Balakrishnan, N., Nagaraja, H.N.: A First Course in Order Statistics. Wiley, New York (2003)

    MATH  Google Scholar 

  4. Balakrishnan, N., Joshi, P.C.: Moments of order statistics from doubly truncated Pareto distribution. J. Indian Stat. Assoc. 20, 109–117 (1982)

    MathSciNet  Google Scholar 

  5. Balakrishnan, N., Malik, H.J.: Some general identities involving order statistics. Commun. Stat. Theory Methods 14, 333–339 (1985)

    Article  MathSciNet  Google Scholar 

  6. Balakrishnan, N., Malik, H.J., Ahmed, S.E.: Recurrence relations and identities for moments of order statistics, II: specific continuous distributions. Commun. Stat. Theory Methods 17, 2657–2694 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bakouch, H., Al-Zahrani, B., Al-Shomrani, A., Marchi, V., Louzada, F.: An extended lindley distribution. J. Korean Stat. Soc. 41(1), 75–85 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Barnett, V., Lewis, T.: Outlier in Statistical Data, 3rd edn. Wiley, Chichester, England (1994)

    MATH  Google Scholar 

  9. Burkschat, M., Cramer, E., Kamps, U.: Dual generalized order statistics, pp. 13–26. Metron, LXI (2003)

  10. David, H.A.: Order Statistics, 2nd edn. John, New York (1981)

    Google Scholar 

  11. David, H.A., Nagaraja, H.N.: Order Statistics, 3rd edn. Wiley, New York (2003)

    Book  MATH  Google Scholar 

  12. Ghitany, M., Al-Mutairi, D., Nadarajah, S.: Zero-truncated Poisson–Lindley distribution and its application. Math. Comput. Simul. 79(3), 279–287 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ghitany, M., Atieh, B., Nadarajah, S.: Lindley distribution and its application. Math. Comput. Simul. 78(4), 493–506 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ghitany, M., Al-Mutairi, D., Balakrishnan, N., Al-Enezi, L.: Power Lindley distribution and associated inference. Comput. Stat. Data Anal. 64, 20–33 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series and Products, 8th edn. Academic Press, New York (2000)

    MATH  Google Scholar 

  16. Jaheen, Z.F.: Estimation based on generalized order statistics from the Burr model. Commun. Stat. Theory Methods 34, 785794 (2005)

    Article  MathSciNet  Google Scholar 

  17. Joshi, P.C.: Recurrence relations between moments of order statistics from exponential and truncated exponential distributions. Sankhya, B 39, 362–371 (1978)

    MathSciNet  MATH  Google Scholar 

  18. Kamps, U.: A Concept of Generalized Order Statistics. B.G. Teubner, Stuttgart (1995)

    Book  MATH  Google Scholar 

  19. Khan, M.A.R., Khan, R.U., Singh, B.: Moments of dual generalized order statistics from two parameter Kappa distribution and associated inference. J. Appl. Probab. Stat. 14, 85–101 (2019)

    Google Scholar 

  20. Kim, C., Han, K.: Bayesian estimation of Rayleigh distribution based on generalized order statistics. Appl. Math. Sci. 8, 7475–7485 (2014)

    Google Scholar 

  21. Kumar, D.: The extended generalized half logistic distribution based on ordered random variables. Tamkang J. Math. 46, 245–256 (2015a)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kumar, D.: Exact moments of generalized order statistics from type II exponentiated log-logistic distribution. Hacettepe J. Math. Stat. 44, 715–733 (2015b)

    MathSciNet  MATH  Google Scholar 

  23. Kumar, D., Dey, S., Nadarajah, S.: Extended exponential distribution based on order statistics. Commun. Stat. Theory Methods 46, 9166–9184 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kumar, D., Goyal, A.: Generalized Lindley distribution based on order statistics and associated inference with application. Ann. Data Sci. 6, 707–736 (2019)

    Article  Google Scholar 

  25. Kundu, D., Howlader, H.: Bayesian inference and prediction of the inverse Weibull distribution for Type-II censored data. Comput. Stat. Data Anal. 54(6), 1547–1558 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lindley, D.: Fiducial distributions and bayes theorem. J. R. Statist. Soc. Ser. B 20, 102–107 (1958)

    MathSciNet  MATH  Google Scholar 

  27. Mabrouk, Iman S.: Statistical analysis for an imprecise flood dataset using the generalized inverse Lindley distribution. Int. J. Contemp. Math. Sci. 14(4), 163–177 (2019)

    Article  Google Scholar 

  28. Malik, H.J., Balakrishnan, N., Ahmed, S.E.: Recurrence relations and identities for moments of order statistics, I: arbitrary continuous distribution. Commun. Stat. Theory Methods 17, 2623–2655 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  29. Malik, M.R., Kumar, D.: Generalized Pareto disatribution based on generalized order statistics ans associated inference. Stat. Trans New Ser.A 20(3), 57–79 (2019)

    Google Scholar 

  30. Mohie El-Din, M.M., Mahmoud, M.A.W., Abu-Youssef, S.E.: Moments of order statistics from parabolic and skewed distributions and characterization of Weibull distribution. Commun. Stat. Simul. Comput. 20, 639–645 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nadarajah, S., Bakouch, H.S., Tahmasbi, R.: A generalized lindley distribution. Sankhya B 73(2), 331–359 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Safi, S.K., Ahmed, R.H.: Statistical estimation based on generalized order statistics from Kumaraswamy distribution. In: Proceeding of the 14st Applied Stochastic Models and Data Analysis (ASMDA)International Conference, Mataro (Barcelona), Spain, 25-28 (2013)

  33. Sankaran, M.: The discrete Poisson–Lindley distribution. Biometrics 26(1), 145–149 (1970)

    Article  Google Scholar 

  34. Shanker, R., Sharma, S., Shanker, R.: A two-parameter lindley distribution for modeling waiting and survival times data. Appl. Math. 4, 363–368 (2013)

    Article  Google Scholar 

  35. Sharma, V.K., Singh, S.K., Singh, U., Merovci, F.: The generalized inverse Lindley distribution: a New inverse statistical model for the study of upside-down bathtub data. Commun. Stat. Theory Methods. 45(19), 5709–5729 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Singh, S.K., Singh, U., Sharma, V.K.: Bayesian prediction of future observations from inverse Weibull distribution based on Type-II hybrid censored sample. Int. J. Adv. Stat. Prob. 1, 32–43 (2013)

    Article  Google Scholar 

  37. Singh, B., Khan, R.U., Khan, M.A.R.: Generalized order statistics from kumaraswamy Burr -III distribution and related inferences. J. Stat. 19, 1–16 (2018)

    Google Scholar 

  38. Zakerzadeh, H., Dolati, A.: Generalized lindley distribution. J. Math. Ext. 3(2), 13–25 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editor and anonymous referee for careful reading and for comments which substantially improved our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Lemma 1

Let f(x) and F(x) be given by (1) and (2), respectively. For \(a_{1} > 0\) and \(a_{2} > 0\), let

$$\begin{aligned} \displaystyle I (a_{1}, a_{2}) = \int _0^\infty x^{a_{1}} F^{a_{2}} (x) f(x) dx. \end{aligned}$$

Then,

$$\begin{aligned} \displaystyle I(a_{1}, a_{2}) = \sum _{i=0}^{a_{2}}{a_{2} \atopwithdelims ()i}\frac{\eta ^{i+2}}{(1+\eta )^{i+1}}\left[ \frac{\Gamma \left( \frac{\tau (i+1)-a_{1}}{\tau }+1\right) }{(\eta (a_{2}+1))^{\frac{\tau (i+1)-a_{1}}{\tau }+1}}+\frac{\Gamma \left( \frac{\tau (i+2)-a_{1}}{\tau }+1\right) }{(\eta (a_{2}+1))^{\frac{\tau (i+2)-a_{1}}{\tau }+1}}\right] , \end{aligned}$$

where \(\Gamma (\lambda )=\int _{0}^{\infty }z^{\lambda -1}~e^{-z}dz.\)

Proof

We can write

$$\begin{aligned} \displaystyle \int _0^\infty x^{a_{1}} F^{a_{2}} (x) f(x) dx = \frac{\tau \eta ^{2}}{1+\eta }\int _0^\infty x^{a_{1}-2\tau -1}~(1+x^{\tau })~e^{-\frac{\eta (a_{2}+1)}{ x^{\tau }}}\left( 1+\frac{\eta }{1+\eta }\frac{1}{x^{\tau }}\right) ^{a_{2}}dx. \end{aligned}$$

Using the binomial expression, the above can be rewritten as

$$\begin{aligned} \displaystyle \int _0^\infty x^{a_{1}} F^{a_{2}} f(x) dx= & {} \displaystyle \sum _{i=0}^{a_{2}}{a_{2} \atopwithdelims ()i}\frac{\eta ^{i+2}}{(1+\eta )^{i+1}}\int _0^\infty x^{a_{1}-\tau (i+2)-1}~(1+x^{\tau })~e^{-\frac{\eta (a_{2}+1)}{ x^{\tau }}}dx \\= & {} \displaystyle \sum _{i=0}^{a_{2}}{a_{2} \atopwithdelims ()i}\frac{\eta ^{i+2}}{(1+\eta )^{i+1}}\Bigg [\int _0^\infty x^{a_{1}-\tau (i+2)-1}~e^{-\frac{\eta (a_{2}+1)}{ x^{\tau }}}dx\\&+ \displaystyle \int _0^\infty x^{a_{1}-\tau (i+3)-1}~e^{-\frac{\eta (a_{2}+1)}{ x^{\tau }}}dx\Bigg ] \\= & {} \displaystyle \sum _{i=0}^{a_{2}}{a_{2} \atopwithdelims ()i}\frac{\eta ^{i+2}}{(1+\eta )^{i+1}}\Bigg [\frac{1}{\tau ~(\eta (a_{2}+1))^{\frac{\tau (i+1)-a_{1}}{\tau }+1}}\int _0^\infty z^{\frac{\tau (i+1)-a_{1}}{\tau }}~e^{-z}dz \\&+ \displaystyle \frac{1}{\tau ~(\eta (a_{2}+1))^{\frac{\tau (i+2)-a_{1}}{\tau }+1}}\int _0^\infty z^{\frac{\tau (i+2)-a_{1}}{\tau }}~e^{-z}dz\Bigg ]. \end{aligned}$$

\(\square \)

Lemma 2

For \(a_{1} > 0\), \(a_{2} > 0\), \(a_{3} > 0\) and \(a_{4} > 0\), let

$$\begin{aligned} \displaystyle K (a_{1}, a_{2}, a_{3}, a_{4}) = \int _0^\infty \int _x^\infty x^{a_{3}} y^{a_{4}} F^{a_{1}} (x) F^{a_{2}} (y) f(x) f(y) dy dx. \end{aligned}$$

Then,

$$\begin{aligned}&K(a_{1}, a_{2}, a_{3}, a_{4}) = \sum _{i=0}^{a_{2}}\sum _{j=0}^{i_1}{\left( {\begin{array}{c}a_{2}\\ i\end{array}}\right) } {\left( {\begin{array}{c}a_{1}\\ j\end{array}}\right) }\frac{\eta ^{i+j+4}}{(1+\eta )^{i+j+3}} \\&\left[ \frac{\left( \frac{a_{2}+1}{a_{1}+1}\right) ^{\frac{\tau (i+1)-a_{4}}{\tau }} \Gamma \left( \frac{\tau (i+1)-a_{4}}{\tau }+\frac{\tau (j+1)-a_{3}}{\tau }+1\right) }{\left( \frac{\tau (i+1)-a_{4}}{\tau }\right) [\eta (a_{1}+1)]^{\frac{\tau (j+1)-a_{3}}{\tau }+\frac{\tau (i+1)}{\tau }+2}\left( \frac{a_{2}+1}{a_{1}+1}+1 \right) ^{\frac{\tau (j+1)-a_{3}}{\tau }+\frac{\tau (i+1)-a_{4}}{\tau }+1}}\right. \\&\quad \times ~2F_{1}\left( 1,\frac{\tau (i+1)-a_{4}}{\tau }+\frac{\tau (j+1)- a_{3}}{\tau }+1;\frac{\tau (j+1)-a_{3}}{\tau }+2;\frac{a_{1}+1}{a_{1}+a_{2}+2}\right) \\&\quad +\frac{\left( \frac{a_{2}+1}{a_{1}+1}\right) ^{\frac{\tau (i+2)- a_{4}}{\tau }}\Gamma \left( \frac{\tau (i+2)-a_{4}}{\tau }+ \frac{\tau (j+2)-a_{3}}{\tau }+1\right) }{\left( \frac{\tau (i+2)- a_{4}}{\tau }\right) [\eta (a_{1}+1)]^{\frac{\tau (j+2)-a_{3}}{\tau } +\frac{\tau (i+2)}{\tau }+2}\left( \frac{a_{2}+1}{a_{1}+1}+1 \right) ^{\frac{\tau (j+2)-a_{3}}{\tau }+\frac{\tau (i+2)-a_{4}}{\tau }+1}}. \\&\quad \times ~2F_{1}\left( 1,\frac{\tau (i+2)-a_{4}}{\tau }+\frac{\tau (j+2)- a_{3}}{\tau }+1;\frac{\tau (j+2)-a_{3}}{\tau }+2;\frac{a_{1}+1}{a_{1} +a_{2}+2}\right) \\&\quad +\frac{\left( \frac{a_{2}+1}{a_{1}+1}\right) ^{\frac{\tau (i+2)- a_{2}}{\tau }}\Gamma \left( \frac{\tau (i+2)-a_{4}}{\tau }+ \frac{\tau (j+2)-a_{3}}{\tau }+1\right) }{\left( \frac{\tau (i+2)- a_{4}}{\tau }\right) [\eta (a_{1}+1)]^{\frac{\tau (j+2)-a_{3}}{\tau }+ \frac{\tau (i+2)}{\tau }+2}\left( \frac{a_{2}+1}{a_{1}+1}+1 \right) ^{\frac{\tau (j+2)-a_{3}}{\tau }+\frac{\tau (i+2)-a_{4}}{\tau }+1}}. \\&\quad \times ~2F_{1}\left( 1,\frac{\tau (i+2)-a_{4}}{\tau }+ \frac{\tau (j+2)-a_{3}}{\tau }+1;\frac{\tau (j+2)-a_{3}}{\tau }+2; \frac{a_{1}+1}{a_{1}+a_{2}+2}\right) \\&\quad +\frac{\left( \frac{a_{2}+1}{a_{1}+1}\right) ^{\frac{\tau (i+3)- a_{4}}{\tau }}\Gamma \left( \frac{\tau (i+3)-a_{4}}{\tau }+ \frac{\tau (j+3)-a_{3}}{\tau }+1\right) }{\left( \frac{\tau (i+3)- a_{4}}{\tau }\right) [\eta (a_{1}+1)]^{\frac{\tau (j+3)-a_{3}}{\tau } +\frac{\tau (i+3)}{\tau }+2}\left( \frac{a_{2}+1}{a_{1}+1}+1 \right) ^{\frac{\tau (j+3)-a_{3}}{\tau }+\frac{\tau (i+3)-a_{4}}{\tau }+1}}. \\&\quad \left. \times ~2F_{1}\left( 1,\frac{\tau (i+3)-a_{4}}{\tau } +\frac{\tau (j+3)-a_{3}}{\tau }+1;\frac{\tau (j+3)-a_{3}}{\tau }+2; \frac{a_{1}+1}{a_{1}+a_{2}+2}\right) \right] , \end{aligned}$$

where \({}_2 F_1(a,b;~c;~x)\) denotes the Gauss hypergeometric function defined by

$$\begin{aligned} {}_2 F_1(a_{1},a_{2};~a_{3};~x)=\sum _{p=0}^{\infty }\frac{(a_{1})_{p}~ (a_{2})_{p}}{(a_{3})_{p}}\frac{x^{p}}{p!}, \end{aligned}$$

where \((f)_{p}=f(f+1)\ldots (f+p-1)\) denotes the ascending factorial.

Proof

We can write

$$\begin{aligned}&\displaystyle \int _x^\infty y^{a_{4}} F^{a_{2}} (y) f(y) dy \\&\quad = \displaystyle \left( \frac{\tau \eta ^{2}}{1+\eta }\right) \int _x^\infty y^{a_{4}-2\tau -1}(1+y^{\tau })e^{-\frac{\eta (a_{2}+1)}{y^{\tau }}} \left( 1+\frac{\eta }{1+\eta }\frac{1}{y^{\tau }}\right) ^{a_{2}} dy \\&\quad = \displaystyle \left( \frac{\tau \eta ^{2}}{1+\eta }\right) \sum _{i = 0}^{a_{2}}{a_{2} \atopwithdelims ()i}\left( \frac{\eta }{1+\eta }\right) ^{i}\int _x^\infty y^{a_{4}-\tau (i+2)-1}(1+y^{\tau })e^{-\frac{\eta (a_{2}+1)}{y^{\tau }}}dy \\&\quad = \displaystyle \left( \frac{\tau \eta ^{2}}{1+\eta }\right) \sum _{i = 0}^{a_{2}}{a_{2} \atopwithdelims ()i}\left( \frac{\eta }{1+\eta }\right) ^{i}\Bigg [\int _x^\infty y^{a_{4}-\tau (i+2)-1}(1+y^{\tau })e^{-\frac{\eta (a_{2}+1)}{y^{\tau }}}dy \\&\qquad + \displaystyle \int _x^\infty y^{a_{4}-\tau (i+3)-1}(1+y^{\tau })e^{-\frac{\eta (a_{2}+1)}{y^{\tau }}}dy\Bigg ] \\&\quad = \displaystyle \left( \frac{\tau \eta ^{2}}{1+\eta }\right) \sum _{i = 0}^{a_{2}}{a_{2} \atopwithdelims ()i}\left( \frac{\eta }{1+\eta }\right) ^{i} \Bigg [\frac{1}{\tau (\eta (a_{2}+1))^{\frac{\tau (i+1)- a_{4}}{\tau }+1}}\int _{0}^{\frac{\eta (a_{2}+1)}{x^{\tau }}} z^{\frac{\tau (i+1)-a_{4}}{\tau }}~e^{-z}dz \\&\qquad + \displaystyle \frac{1}{\tau (\eta (a_{2}+1))^{\frac{\tau (i+2)-a_{4}}{\tau }+1}}\int _{0}^{\frac{\eta (a_{2}+1)}{x^{\tau }}} z^{\frac{\tau (i+2)-a_{4}}{\tau }}~e^{-z}dz\Bigg ] \\&\quad = \sum _{i= 0}^{a_{2}} {a_{2} \atopwithdelims ()i}\frac{\eta ^{i+2}}{(1+\eta )^{i+1}} \left[ \frac{\gamma \left( \frac{\tau (i+1)-a_{4}}{\tau }+ 1,~\frac{\eta (i+1)}{x^{\tau }}\right) }{(\eta (a_{2}+1))^{\frac{\tau (i+1) -a_{4}}{\tau }+1}}+\frac{\gamma \left( \frac{\tau (i+2)-a_{4}}{\tau }+1, ~\frac{\eta (a_{2}+1)}{x^{\tau }}\right) }{(\eta (a_{2}+1) )^{\frac{\tau ~(i+2)-a_{4}}{\tau }+1}}\right] , \end{aligned}$$

where we have set \(z=\frac{\eta (a_{2}+1)}{y^{\tau }}\) and \(\gamma (a_{1},x)=\int _{0}^{x}t^{a_{1}-1}exp(-t)dt\) denote the complementary incomplete gamma function. Hence,

$$\begin{aligned}&\displaystyle \int _0^\infty \int _x^\infty x^{a_{3}} y^{a_{4}} F^{a_{1}} (x) F^{a_{2}} (y) f(x) f(y) dy dx \\&\quad = \sum _{i= 0}^{a_{2}} {b_{2} \atopwithdelims ()i}\frac{\tau \eta ^{i+4}}{(1+\eta )^{i+1}} \int _{0}^{\infty }x^{p_{1}-2\tau -1}~(1+x^{\tau })~e^{-\frac{\eta (a_{1}+1)}{ x^{\tau }}} \left( 1+\frac{\eta }{(1+\eta )}\frac{1}{x^{\tau }}\right) ^{a_{1}} \\&\qquad \times \displaystyle \left[ \frac{\gamma \left( \frac{\tau (i+1) -a_{4}}{\tau }+1,~ \frac{\eta (i+1)}{x^{\tau }}\right) }{(\eta (a_{2}+1))^{\frac{\tau (i+1)-a_{4}}{\tau }+1}}+ \frac{\gamma \left( \frac{\tau (i+2)-a_{4}}{\tau }+1,~ \frac{\eta (a_{3}+1)}{x^{\tau }}\right) }{(\eta (a_{2}+ 1))^{\frac{\tau ~(i+2)-a_{4}}{\tau }+1}}\right] dx \\&\quad = \sum _{i = 0}^{a_{2}} \sum _{j = 0}^{a_{1}} {a_{2} \atopwithdelims ()i}{a_{1} \atopwithdelims ()j}\frac{\tau \eta ^{i+j+4}}{(1+\eta )^{i+j+2}} \\&\qquad \times \displaystyle \Bigg [\frac{1}{(\eta (a_{2}+1))^{\frac{\tau (i+1)-a_{4}}{\tau }+1}}\int _{0}^{\infty }x^{a_{3}-\tau (j+2)-1}~(1+x^{\tau }) e^{-\frac{\eta (a_{1}+1)}{x^{\tau }}} \\&\qquad \times \displaystyle \gamma \left( \frac{\tau (i+1)-a_{4}}{\tau }+1,~\frac{\eta (a_{2}+1)}{x^{\tau }}\right) dx \\&\qquad + \displaystyle \frac{1}{(\eta (a_{2}+1))^{\frac{\tau (i+2)-a_{4}}{\tau }+1}} \int _{0}^{\infty }x^{a_{3}-\tau (j+2)-1}~(1+x^{\tau })~ e^{-\frac{\eta (a_{1}+1)}{x^{\tau }}} \\&\qquad \times \displaystyle \gamma \left( \frac{\tau (i+2)-a_{4}}{\tau }+1, ~\frac{\eta (a_{2}+1)}{x^{\tau }}\right) dx\Bigg ] \\&\quad = \displaystyle \sum _{i = 0}^{a_{2}} \sum _{j = 0}^{a_{1}} {a_{2} \atopwithdelims ()i}{a_{1} \atopwithdelims ()j}\frac{\tau \eta ^{i+j+4}}{(1+\eta )^{i+j+2}} \\&\qquad \times \displaystyle \Bigg [\frac{1}{(\eta (a_{2}+1))^{\frac{\tau (i+1)- a_{4}}{\tau }+1}}\int _{0}^{\infty }x^{a_{3}-\tau (j+2)-1} ~e^{-\frac{\eta (a_{1}+1)}{x^{\tau }}} \\&\qquad \times \displaystyle \gamma \left( \frac{\tau (i+1)-a_{4}}{\tau }+1,~ \frac{\eta (a_{2}+1)}{x^{\tau }}\right) dx \\&\qquad + \displaystyle \frac{1}{(\eta (a_{2}+1))^{\frac{\tau (i+1)-a_{4}}{\tau }+1}} \int _{0}^{\infty }x^{a_{3}-\tau (j+3)-1}~ e^{-\frac{\eta (a_{1}+1)}{x^{\tau }}} \\&\qquad \times \displaystyle \gamma \left( \frac{\tau (i+1)-a_{4}}{\tau }+1,~\frac{\eta (a_{2}+1)}{x^{\tau }}\right) dx \\&\qquad + \displaystyle \frac{1}{(\eta (a_{2}+1))^{\frac{\tau (i+1)-a_{4}}{\tau }+1}} \int _{0}^{\infty }x^{a_{3}-\tau (j+2)-1}~e^{-\frac{\eta (a_{1}+1)}{x^{\tau }}} \\&\qquad \times \displaystyle \gamma \left( \frac{\tau (i+2)-a_{4}}{\tau }+1,~\frac{\eta (a_{2}+1)}{x^{\tau }}\right) dx \\&\qquad + \displaystyle \frac{1}{(\eta (a_{2}+1))^{\frac{\tau (i+1)-a_{4}}{\tau }+1}}\int _{0}^{\infty }x^{a_{3}-\tau (j+3)-1}~e^{-\frac{\eta (a_{1}+1)}{x^{\tau }}} \\ \end{aligned}$$

Using the transformation \(t= \frac{\eta (a_{2}+1)}{x^{\tau }}\). The result follows by using equation (6.455.1) in Gradshteyn and Ryzhik (2014) to calculate the above integral. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, D., Nassar, M. & Dey, S. Inference for generalized inverse Lindley distribution based on generalized order statistics. Afr. Mat. 31, 1207–1235 (2020). https://doi.org/10.1007/s13370-020-00791-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13370-020-00791-4

Keywords

Mathematics Subject Classification

Navigation