Skip to main content
Log in

Elemental Analysis and Classification of Nicotine Pouches Using Machine Learning Assisted Laser Induced Breakdown Spectroscopy

  • Research Article-Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The elemental analysis and classification of nicotine pouches using machine learning assisted Laser Induced Breakdown Spectroscopy (LIBS) is reported for the very first time. Nicotine pouches are widely recognized as non-tobacco products. These pouches have become popular among individuals. LIBS analysis has identified many elements present in the pouches such as Aluminium, Barium, Calcium, Chromium, Copper, Iron, Magnesium, Sodium, Scandium, Strontium, and Titanium. Twenty-nine machine-learning classification models from the classification learner app were utilized to classify the nicotine pouches. In the context of classification, our analysis was focused on two separate classes. In 1st Class, the flavors remain the same while the nicotine strength changes. Contrarily, in 2nd Class, flavors change while the nicotine strength remains the same. The application of supervised machine learning classification techniques yielded noteworthy outcomes. In 1st Class, the highest test accuracy achieved was 98%, while in 2nd Class, a multitude of models achieved a remarkable 100% test accuracy, emphasizing the precision achieved in this configuration. This shows machine learning models are really good in classification based on flavors of nicotine pouches as well as on nicotine strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Azzopardi, D.; Liu, C.; Murphy, J.: Chemical characterization of tobacco-free “modern” oral nicotine pouches and their position on the toxicant and risk continuums. Drug. Chem. Toxicol. 45, 2246–2254 (2022). https://doi.org/10.1080/01480545.2021.1925691

    Article  Google Scholar 

  2. Stanfill, S.; Tran, H.; Tyx, R.; Fernandez, C.; Zhu, W.; Marynak, K.; King, B.; Valentín-Blasini, L.; Blount, B.C.; Watson, C.: Characterization of total and unprotonated (free) nicotine content of nicotine pouch products. Nicotine Tob. Res. 23, 1590–1596 (2021). https://doi.org/10.1093/ntr/ntab030

    Article  Google Scholar 

  3. Vogel, E.A.; Barrington-Trimis, J.L.; Kechter, A.; Tackett, A.P.; Liu, F.; Sussman, S.; Lerman, C.; Unger, J.B.; Halbert, C.H.; Chaffee, B.W.; Leventhal, A.M.: Differences in young adults’ perceptions of and willingness to use nicotine pouches by tobacco use status. Int. J. Environ. Res. Public Health 19, 2685 (2022). https://doi.org/10.3390/ijerph19052685

    Article  Google Scholar 

  4. Farsalinos, K.E.; Le Houezec, J.: Regulation in the face of uncertainty: the evidence on electronic nicotine delivery systems (e-cigarettes). Risk Manag. Healthc. Policy 8, 157–167 (2015). https://doi.org/10.2147/RMHP.S62116

    Article  Google Scholar 

  5. McEwan, M.; Azzopardi, D.; Gale, N.; Camacho, O.M.; Hardie, G.; Fearon, I.M.; Murphy, J.: A randomised study to investigate the nicotine pharmacokinetics of oral nicotine pouches and a combustible cigarette. Eur. J. Drug Metab. Pharmacokinet. 47, 211–221 (2022). https://doi.org/10.1007/s13318-021-00742-9

    Article  Google Scholar 

  6. Robichaud, M.O.; Seidenberg, A.B.; Byron, M.J.: Tobacco companies introduce “tobacco-free” nicotine pouches. Tob. Control. 29, E145–E146 (2020). https://doi.org/10.1136/tobaccocontrol-2019-055321

    Article  Google Scholar 

  7. Patwardhan, S.; Fagerström, K.: The new nicotine pouch category: a tobacco harm reduction tool? Nicotine Tob. Res. 24, 623–625 (2022). https://doi.org/10.1093/ntr/ntab198

    Article  Google Scholar 

  8. Jablonski, J.J.; Cheetham, A.G.; Martin, A.M.: Market survey of modern oral nicotine products: determination of select HPHCs and comparison to traditional smokeless tobacco products. Separations 9, 65 (2022). https://doi.org/10.3390/separations9030065

    Article  Google Scholar 

  9. Ye, D.; Rahman, I.: Emerging oral nicotine products and periodontal diseases. Int. J. Dent. 2023, 1–7 (2023). https://doi.org/10.1155/2023/9437475

    Article  Google Scholar 

  10. Iftikhar, A.; Jamil, Y.; Nazeer, N.; Tahir, M.S.; Amin, N.: Optical emission spectroscopy of nickel-substituted cobalt – zinc ferrite. J. Supercond. Nov. Magn. 34, 1849–1854 (2021)

    Article  Google Scholar 

  11. Sattar, H.; Hu, Z.; Zheng, W.; Zhou, J.; Khuram Shahzad, M.; Rehman, F.; Guo, L.; Luo, W.: Exploring the potential and recent advancement in laser Opto-ultrasonic detection for material characterization: a state-of-the-art review. Opt. Laser Technol. 171, 110316 (2024). https://doi.org/10.1016/j.optlastec.2023.110316

    Article  Google Scholar 

  12. Umar, Z.A.; Liaqat, U.; Ahmed, R.; Hedwig, R.; Ramli, M.; Marpaung, M.A.; Kurniawan, K.H.; Pardede, M.; Baig, M.A.: Determination of micronutrients and toxic elements in moringa oleifera leaves by calibration free laser-induced breakdown spectroscopy (LIBS). Anal. Lett. 55, 755–769 (2022). https://doi.org/10.1080/00032719.2021.1966794

    Article  Google Scholar 

  13. Hussain, T.; Gondal, M.A.: Laser induced breakdown spectroscopy (LIBS) as a rapid tool for material analysis. J. Phys. Conf. Ser. 439, 012050 (2013). https://doi.org/10.1088/1742-6596/439/1/012050

    Article  Google Scholar 

  14. Panya Panya, S.N.; Galmed, A.H.; Maaza, M.; Mothudi, B.M.; Harith, M.A.; Kennedy, J.: Laser-induced breakdown spectroscopy (LIBS) on geological samples: compositional differentiation. MRS Adv. 3, 1969–1983 (2018)

    Article  Google Scholar 

  15. Abdel-Salam, Z.; Al Sharnoubi, J.; Harith, M.A.: Qualitative evaluation of maternal milk and commercial infant formulas via LIBS. Talanta 115, 422–426 (2013). https://doi.org/10.1016/j.talanta.2013.06.003

    Article  Google Scholar 

  16. Cremers, D.A.; Radziemski, L.J.: Laser-Induced Breakdown Spectroscopy, p. 1–27. Wiley (2013)

    Book  Google Scholar 

  17. Cremers, D.A.; Radziemski, L.J.: Qualitative LIBS Analysis. In: Handbook of Laser-Induced Breakdown Spectroscopy, pp. 151–183. Wiley (2013)

    Chapter  Google Scholar 

  18. López-Claros, M.; Fortes, F.J.; Laserna, J.J.: Subsea spectral identification of shipwreck objects using laser-induced breakdown spectroscopy and linear discriminant analysis. J. Cult. Herit. 29, 75–81 (2018). https://doi.org/10.1016/j.culher.2016.12.015

    Article  Google Scholar 

  19. Norman, M.; Robinson, P.; Clark, D.: Major- and trace-element analysis of sulfide ores by laser-ablation ICP-MS, solution ICP-MS, and XRF: New data on international reference materials. Can. Mineral. 41, 293–305 (2003). https://doi.org/10.2113/gscanmin.41.2.293

    Article  Google Scholar 

  20. Ahmed, N.; Ahmed, R.; Baig, M.A.: Analytical analysis of different karats of gold using laser induced breakdown spectroscopy (LIBS) and laser ablation time of flight mass spectrometer (LA-TOF-MS). Plasma Chem. Plasma Process. 38, 207–222 (2018). https://doi.org/10.1007/s11090-017-9862-2

    Article  Google Scholar 

  21. Hussain Shah, S.K.; Iqbal, J.; Ahmad, P.; Khandaker, M.U.; Haq, S.; Naeem, M.: Laser induced breakdown spectroscopy methods and applications: a comprehensive review. Radiat. Phys. Chem. 170, 108666 (2020). https://doi.org/10.1016/j.radphyschem.2019.108666

    Article  Google Scholar 

  22. Wang, Z.; Sher, M.; Gu, W.; Song, Y.; Wang, Y.; Hou, Z.; Song, W.; Li, Z.: Trends in analytical chemistry recent advances in laser-induced breakdown spectroscopy quanti fi cation : from fundamental understanding to data processing. Trends Anal. Chem. 143, 116385 (2021). https://doi.org/10.1016/j.trac.2021.116385

    Article  Google Scholar 

  23. Chen, T.; Zhang, T.; Li, H.: Applications of laser-induced breakdown spectroscopy (LIBS) combined with machine learning in geochemical and environmental resources exploration. TrAC Trends Anal. Chem. 133, 116113 (2020). https://doi.org/10.1016/j.trac.2020.116113

    Article  Google Scholar 

  24. Zhou, Z.; Ge, Y.; Liu, Y.: Real-time monitoring of carbon concentration using laser-induced breakdown spectroscopy and machine learning. Opt. Express 29, 39811 (2021). https://doi.org/10.1364/oe.443732

    Article  Google Scholar 

  25. Zhang, D.; Zhang, H.; Zhao, Y.; Chen, Y.; Ke, C.; Xu, T.; He, Y.: A brief review of new data analysis methods of laser-induced breakdown spectroscopy: machine learning. Appl. Spectrosc. Rev. 57, 89–111 (2022). https://doi.org/10.1080/05704928.2020.1843175

    Article  Google Scholar 

  26. Rao, A.P.; Jenkins, P.R.; Auxier, J.D.; Shattan, M.B.: Comparison of machine learning techniques to optimize the analysis of plutonium surrogate material: Via a portable LIBS device. J. Anal. At. Spectrom. 36, 399–406 (2021). https://doi.org/10.1039/d0ja00435a

    Article  Google Scholar 

  27. Sayyad, M.H.; Saleem, M.; Shah, M.; Shaikh, N.M.; Baig, M.A.: Spectroscopic studies of different brands of cigarettes using laser-induced breakdown spectroscopy. AIP Conf. Proc. 1017, 363–367 (2008). https://doi.org/10.1063/1.2940662

    Article  Google Scholar 

  28. Chatterjee, S.; Singh, M.; Biswal, B.P.; Sinha, U.K.; Patbhaje, S.; Sarkar, A.: Application of laser-induced breakdown spectroscopy (LIBS) coupled with PCA for rapid classification of soil samples in geothermal areas. Anal. Bioanal. Chem. 411, 2855–2866 (2019). https://doi.org/10.1007/s00216-019-01731-3

    Article  Google Scholar 

  29. Bilal, M.; Jamil, Y.; Tian, Z.Y.: Laser induced breakdown spectroscopy study of non-premixed flames with machine learning algorithms. Eng. Sci. 21, 1–11 (2023). https://doi.org/10.30919/es8d773

    Article  Google Scholar 

  30. Ashour, A.S.; Hawas, A.R.; Guo, Y.: Comparative study of multiclass classification methods on light microscopic images for hepatic schistosomiasis fibrosis diagnosis. Heal. Inf. Sci. Syst. 6, 1–12 (2018). https://doi.org/10.1007/s13755-018-0047-z

    Article  Google Scholar 

  31. Charbuty, B.; Abdulazeez, A.: Classification based on decision tree algorithm for machine learning. J. Appl. Sci. Technol. Trends. 2, 20–28 (2021). https://doi.org/10.38094/jastt20165

    Article  Google Scholar 

  32. Chen, X.; Li, X.; Yu, X.; Chen, D.; Liu, A.: Diagnosis of human malignancies using laser-induced breakdown spectroscopy in combination with chemometric methods. Spectrochim. Acta Part B At. Spectrosc. 139, 63–69 (2018). https://doi.org/10.1016/j.sab.2017.11.016

    Article  Google Scholar 

  33. Tharwat, A.: Linear vs. quadratic discriminant analysis classifier: a tutorial. Int. J. Appl. Pattern Recognit. 3, 145 (2016). https://doi.org/10.1504/ijapr.2016.079050

    Article  Google Scholar 

  34. Resti, Y.; Irsan, C.; Neardiaty, A.; Annabila, C.; Yani, I.: Fuzzy discretization on the multinomial Naïve Bayes method for modeling multiclass classification of corn plant diseases and pests. Mathematics 11, 1761 (2023). https://doi.org/10.3390/math11081761

    Article  Google Scholar 

  35. Hota, S.; Pathak, S.: KNN classifier based approach for multi-class sentiment analysis of twitter data. Int. J. Eng. Technol. 7, 1372–1375 (2018). https://doi.org/10.14419/ijet.v7i3.12656

    Article  Google Scholar 

  36. Dietterich, T.G.: Ensemble methods in machine learning. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 1857 LNCS, 1–15 (2000). https://doi.org/10.1007/3-540-45014-9_1

  37. Ripley, B.D.: Neural networks and related methods for classification. J. R. Stat. Soc. Ser. B 56, 409–437 (1994). https://doi.org/10.1111/j.2517-6161.1994.tb01990.x

    Article  MathSciNet  Google Scholar 

  38. Ahmed, N.; Umar, Z.A.; Ahmed, R.; Aslam Baig, M.: On the elemental analysis of different cigarette brands using laser induced breakdown spectroscopy and laser-ablation time of flight mass spectrometry. Spectrochim. Acta Part B At. Spectrosc. 136, 39–44 (2017). https://doi.org/10.1016/j.sab.2017.08.006

    Article  Google Scholar 

  39. Mohanty, S.; Benya, A.; Hota, S.; Kumar, M.S.; Singh, S.: Eco-toxicity of hexavalent chromium and its adverse impact on environment and human health in Sukinda Valley of India: a review on pollution and prevention strategies. Environ. Chem. Ecotoxicol. 5, 46–54 (2023). https://doi.org/10.1016/j.enceco.2023.01.002

    Article  Google Scholar 

  40. Langrrd, S.: One hundred years of chromium and cancer: a review of epidemiological evidence and selected case reports. Am. J. Ind. Med. 17, 189–214 (1990). https://doi.org/10.1002/ajim.4700170205

    Article  Google Scholar 

  41. Hessel, E.V.S.; Staal, Y.C.M.; Piersma, A.H.; den Braver-Sewradj, S.P.; Ezendam, J.: Occupational exposure to hexavalent chromium. Part I. Hazard assessment of non-cancer health effects. Regul. Toxicol. Pharmacol. 126, 105048 (2021). https://doi.org/10.1016/j.yrtph.2021.105048

    Article  Google Scholar 

  42. Rehan, I.; Khan, M.Z.; Ali, I.; Rehan, K.; Sultana, S.; Shah, S.: Spectroscopic analysis of high protein nigella seeds (Kalonji) using laser-induced breakdown spectroscopy and inductively coupled plasma/optical emission spectroscopy. Appl. Phys. B Lasers Opt. 124, 1–8 (2018). https://doi.org/10.1007/s00340-018-6915-z

    Article  Google Scholar 

  43. Ahmed, N.; Liaqat, U.; Rafique, M.; Baig, M.A.; Tawfik, W.: Detection of toxicity in some oral antidiabetic drugs using LIBS and LA-TOF- MS. Microchem. J. 155, 104679 (2020). https://doi.org/10.1016/j.microc.2020.104679

    Article  Google Scholar 

  44. Pandhija, S.; Rai, N.K.; Rai, A.K.; Thakur, S.N.: Contaminant concentration in environmental samples using LIBS and CF-LIBS. Appl. Phys. B Lasers Opt. 98, 231–241 (2010). https://doi.org/10.1007/s00340-009-3763-x

    Article  Google Scholar 

  45. Feng, K.; Hong, H.; Tang, K.; Wang, J.: Decision making with machine learning and ROC curves. SSRN Electron. J. (2019). https://doi.org/10.2139/ssrn.3382962

    Article  Google Scholar 

  46. Unnikrishnan, V.K.; Choudhari, K.S.; Kulkarni, S.D.; Nayak, R.; Kartha, V.B.; Santhosh, C.: Analytical predictive capabilities of laser induced breakdown spectroscopy (LIBS) with principal component analysis (PCA) for plastic classification. RSC Adv. 3, 25872–25880 (2013). https://doi.org/10.1039/c3ra44946g

    Article  Google Scholar 

  47. Bradley, A.P.: The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 30, 1145–1159 (1997). https://doi.org/10.1016/S0031-3203(96)00142-2

    Article  Google Scholar 

  48. Fawcett, T.: An introduction to ROC analysis. Pattern Recognit. Lett. 27, 861–874 (2006). https://doi.org/10.1016/j.patrec.2005.10.010

    Article  Google Scholar 

  49. Nisar, S.; Alsalme, A.; Zulfiqar, R.; Rizwan, M.; Kim, D.K.; Dastageer, G.; Muhammad Shahazad, Z.: Laser-induced Breakdown Spectroscopy for rapid and accurate qualitative analysis of elemental composition in fertilizers. Mod. Phys. Lett. B 38, 2450124 (2023). https://doi.org/10.1142/S0217984924501240

    Article  Google Scholar 

Download references

Funding

Funding was provided by Pakistan Science Foundation, (Grant no. NSLP-PSF (670)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasir Jamil.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munawar, S., Faheem, M., Bilal, M. et al. Elemental Analysis and Classification of Nicotine Pouches Using Machine Learning Assisted Laser Induced Breakdown Spectroscopy. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-09118-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-09118-y

Keywords

Navigation