Skip to main content
Log in

Impact of Thermal Radiation on Water-Based Hybrid Nanofluid (\(\hbox {Cu}\)\(\hbox {Al}_2\hbox {O}_3\)\(\hbox {H}_2\hbox {O}\)) Flow Over a Forward/Backward Moving Vertical Porous Plate

  • Research Article-Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A complex and fascinating field of study with a wide range of applications can be created by combining natural convection, hybrid nanofluid, thermal radiation, magnetohydrodynamics (MHD), Laplace transform, heat generation/absorption, and forward/backward moving vertical plates. The novelty of this research lies in its comprehensive exploration of heat transport in a specific hybrid nanofluid with a focus on multi-physics interactions, plate motion scenarios, and the application of mathematical techniques. These factors make the study a valuable contribution to heat transfer and fluid dynamics, with potential applications in various engineering and industrial settings. Therefore this work deals with the analysis of an unsteady, electrically conducting, water-based hybrid nanofluid across a forward and backward moving vertical porous plate. Using Laplace transform techniques, the temperature and velocity distributions of a hybrid nanofluid (\(\hbox {Cu}\)\(\hbox {Al}_2\hbox {O}_3\)\(\hbox {H}_2\hbox {O}\)) at different fluid parameters, such as MHD, radiation, porosity, and the heat generation/absorption values at the moment of the plate moving forward and backward, are obtained. The brightly overlaid graphical representation conveys the velocity and temperature distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

\(B_0\) :

Magnetic field intensity (\(\hbox {N mA}^{_-1}\))

\(k^*\) :

Porous parameter (–)

\(q_\textrm{r}\) :

Thermal radiation (–)

\(Q_0\) :

Heat generation/absorption (–)

Pr:

Prandtl number (–)

T :

Temperature of the hybrid nanofluid (k)

\(T_\textrm{w}\) :

Wall temperature (k)

\(T_\infty \) :

Ambient temperature (k)

\(\phi _{\textrm{hnf}}\) :

Hybrid nanofluid volume fraction

\(\mu _{\textrm{f}}\) :

Base fluid dynamic viscosity (\(\hbox {kg m}^{-1}\hbox {s}^{-1}\))

\(\mu _{\textrm{hnf}}\) :

Hybrid nanofluid dynamic viscosity (\(\hbox {kg m}^{-1}\hbox {s}^{-1}\))

\(c_\textrm{p}\) :

Heat capacity (\(\hbox {J kg}^{-1}\, \hbox {k}^{-1}\))

k :

Thermal conductivity (\(\hbox {W}\,\hbox {m}^{-1}\,\hbox {k}^{-1}\))

\(\alpha \) :

Thermal diffusivity

\(\beta \) :

Coefficient of thermal expansion (\(\hbox {k}^{-1}\))

\(\rho _{\textrm{f}}\) :

Fluid density (\(\hbox {kg}\, \hbox {m}^{-3}\))

\(\sigma ^{*}\) :

Stefan–Boltzmann constant (\(\hbox {W}\,\hbox {m}^{-2}\,\hbox {k}^{-4}\))

\(\theta \) :

Dimensionless temperature (–)

u :

Non-dimensional velocity (–)

\(\tau \) :

Dimensionless time (–)

\(\lambda \) :

Direction of the plate moment (–)

g :

Gravity (\(\hbox {m}\,s^{-2}\))

Gr:

Grashof number (–)

M :

Magnetic parameter (–)

Cu:

Copper

\(\hbox {Al}_2\hbox {O}_3\) :

Aluminum oxide

\(\hbox {H}_2\hbox {O}\) :

Water

f:

Fluid

hnf:

Hybrid nanofluid

w:

Wall

\(\infty \) :

Infinity

References

  1. Animasaun, I.L.; Kumar, T.K.; Noah, F.A.; Okoya, S.S.; Al-Mdallal, Q.M.; Bhatti, M.M.: Insight into Darcy flow of ternary-hybrid nanofluid on horizontal surfaces: exploration of the effects of convective and unsteady acceleration. J. Appl. Math. Mech. (ZAMM) 103, e202200197 (2022)

  2. Choi, S.U.S.; Eastman, J.A.: Enhancing Thermal Conductivity of Fluids with Nanoparticles. United States: N. p. Web (1995).

  3. Rout, B.C.; Mishra, S.R.: An analytical approach to the metal and metallic oxide properties of Cu-water and TiO\({}_{2}\)-water nanofluids over a moving vertical plate. Pramana J. Phys. 93, 41 (2019)

    Article  Google Scholar 

  4. Amala, S.; Mahanthesh, B.: Hybrid nanofluid flow over a vertical rotating plate in the presence of Hall current, nonlinear convection and heat absorption. J. Nanofluids 7, 1138–1148 (2018)

  5. Dinarvand, S.; Rostami, M.N.; Pop, I.: A novel hybridity model for TiO\({}_{2}\)-CuO/water hybrid nanofluid flow over a static/moving wedge or corner. Sci. Rep. 9, 16290 (2019)

    Article  Google Scholar 

  6. Wahid, N.S.; Arifin, N.M.; Khashi’ie, N.S.; Pop, I.: Bachok, N.; Hafidzuddin, M.E.H.: MHD mixed convection flow of a hybrid nanofluid past a permeable vertical flat plate with thermal radiation effect. Alex. Eng. J. (2021)

  7. Nadeem, S.; Haq, R.U.; Khan, Z.H.: Heat transfer analysis of water-based nanofluid over an exponentially stretching sheet. Alex. Eng. J. 53(1), 219–224 (2014)

    Article  Google Scholar 

  8. Gumber, P.; Yaseen, M.; Rawat, S.K.; Kumar, M.: Heat transfer in micropolar hybrid nanofluid flow past a vertical plate in the presence of thermal radiation and suction/injection effects. Partial Differ. Equ. Appl. Math. 5, 100240 (2022)

  9. Al-Mdallal, Q.M.; Indumathi, N.; Ganga, B.; Hakeem, A.A.: Marangoni radiative effects of hybrid-nanofluids flow past a permeable surface with inclined magnetic field. Case Stud. Therm. Eng. 17, 100571 (2020)

    Article  Google Scholar 

  10. Animasaun, I.L.; Al-Mdallal, Q.M.; Khan, U.; Alshomrani, A.S.: Unsteady water-based ternary hybrid nanofluids on wedges by bioconvection and wall stretching velocity: thermal analysis and scrutinization of small and larger magnitudes of the thermal conductivity of nanoparticles. Mathematics 10(22), 4309 (2022)

    Article  Google Scholar 

  11. Rajesh, V.; Sheremet, M.; Öztop, H.: Impact of hybrid nanofluids on MHD flow and heat transfer near a vertical plate with ramped wall temperature. Case Stud. Therm. Eng. (2021). https://doi.org/10.1016/j.csite.2021.101557

    Article  Google Scholar 

  12. Areshi, M.; Usman, M.: Unveiling novel insights into the dynamics of ternary hybrid nanofluids on cylindrical surfaces with inclination, under solar MHD and Darcian concept. Arab. J. Sci. Eng. (2024). https://doi.org/10.1007/s13369-024-08867-0

    Article  Google Scholar 

  13. Ullah, Z.: Thermal and concentration slip analysis on heat and mass transfer in magnetic-driven dissipative nanofluid across stretched sheet for high temperature difference. Arab. J. Sci. Eng. (2024). https://doi.org/10.1007/s13369-024-08784-2

    Article  Google Scholar 

  14. Krishna, M.V.; Ahammad, N.A.; Chamkha, A.J.: Radiative MHD flow of Casson hybrid nanofluid over an infinite exponentially accelerated vertical porous surface. Case Stud. Therm. Eng. 27, 101229 (2021)

    Article  Google Scholar 

  15. Mahdy, A.; El-Zahar, E.R.; Rashad, A.M.; Saad, W.; Al-Juaydi, H.S.: The magneto-naturalconvection flow of a micropolar hybrid nanofluid over a vertical plate saturated in a porous medium. Fluids 6, 202 (2021)

    Article  Google Scholar 

  16. Aman, S.; Zokri, S.M.; Ismail, Z.; Salleh, M.Z.; Khan, I.: Effect of MHD and porosity on exact solutions and flow of a hybrid casson-nanofluid. J. Adv. Res. Fluid Mech. Therm. Sci. 44, 131–139 (2018)

    Google Scholar 

  17. Das, S.; Jana, R.N.; Makinde, O.D.: MHD flow of Cu-Al\({}_{2}\)O\({}_{3}\)/water hybrid nanofluid in porous channel: analysis of entropy generation. DDF 377, 42–61 (2017)

    Article  Google Scholar 

  18. Hussanan, A.; Sidra, A.; Zulkhibri, I.; Zuki, S.M.; Widodo, B.: Unsteady natural convection of sodium alginate viscoelastic casson based nanofluid flow over a vertical plate with leading edge accretion/ablation (2018)

  19. Ahmad, S.; Ali, K.; Rizwan, M.; Ashraf, M.: Heat and mass transfer attributes of copper–aluminum oxide hybrid nanoparticles flow through a porous medium. Case Stud. Therm. Eng. 25, 100932 (2021)

    Article  Google Scholar 

  20. Sneha, K.N.; Mahabaleshwar, U.S.; Nihaal, K.M.; et al.: An magnetohydrodynamics effect of non-Newtonian fluid flows over a stretching/shrinking surface with CNT. Arab. J. Sci. Eng. (2024). https://doi.org/10.1007/s13369-023-08528-8

    Article  Google Scholar 

  21. Khan, A.; Khan, D.; Khan, I.; Ali, F.; Karim, F.U.; Imran, M.: MHD flow of sodium alginate-based Casson type nanofluid passing through a porous medium with Newtonian heating. Sci. Rep. 8, 8645 (2018)

    Article  Google Scholar 

  22. Sundar, L.S.; Sharma, K.V.; Singh, M.K.; Sousa, A.C.M.: Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor—a review. Renew. Sustain. Energy Rev. 68, 185–198 (2017)

    Article  Google Scholar 

  23. Sundar, L.S.; Sharma, K.V.; Singh, M.K.; Sousa, A.C.: Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor—a review. Renew. Sustain. Energy Rev. 68, 185–98 (2017)

    Article  Google Scholar 

  24. Aybar, H.S.; Sharifpur, M.; Azizian, M.R.; Mehrabi, M.; Meyer, J.P.: A review of thermal conductivity models for nanofluids. Heat Transf. Eng. 36, 1085–1110 (2015)

    Article  Google Scholar 

  25. Iqbal, Z.; Akbar, N.S.; Azhar, E.; Maraj, E.N.: Performance of hybrid nanofluid (Cu–CuO/water) on MHD rotating transport in oscillating vertical channel inspired by Hall current and thermal radiation. Alex. Eng. J. (2017). https://doi.org/10.1016/j.aej.2017.03.047

    Article  Google Scholar 

  26. Arulmozhi, S.; Sukkiramathi, K.; Santra, S.S.; Edwan, R.; Fernandez-Gamiz, U.; Noeiaghdam, S.: Heat and mass transfer analysis of radiative and chemical reactive effects on MHD nanofluid over an infinite moving vertical plate. Results Eng. 14, 100394 (2022)

    Article  Google Scholar 

  27. Ijaz, S.; Batool, M.; Mehmood, R.; et al.: Biomechanics of swimming microbes in atherosclerotic region with infusion of nanoparticles. Arab. J. Sci. Eng. 47, 6773–6786 (2022)

    Article  Google Scholar 

  28. Rana, S.; Alharbi, K.A.; Fatima, N.; Ali, M.; Shakeel, A.; Mehmood, R.; Gorji, M.R.; Abdelmohsen, S.A.: Interaction of nanoparticles with micro organisms under Lorentz force in a polymer liquid with zero mass flux. J. Taiwan Inst. Chem. Eng. 143, 104683 (2023)

    Article  Google Scholar 

  29. Mehmood, R.; Khan, S.; Maraj, E.N.; Ijaz, S.; Rana, S.: Heat transport mechanism via ion-slip and Hall current in viscoplastic flow along a porous elastic sheet. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 236(3), 907–914 (2022)

    Article  Google Scholar 

  30. Zangooee, M.R.; Hosseinzadeh, K.; Ganji, D.D.: Hydrothermal analysis of hybrid nanofluid flow on a vertical plate by considering slip condition. Theor. Appl. Mech. Lett. 12(5), 100357 (2022)

  31. Thiyagarajan, P.; Sathiamoorthy, S.; Balasundaram, H.; Makinde, O.D.; Fernandez-Gamiz, U.; Noeiaghdam, S.; Santra, S.S.; Altanji, M.: Mass transfer effects on mucus fluid in the presence of chemical reaction. Alex. Eng. J. 62, 193–210 (2023)

  32. Balasundaram, H.; Sathyamoorthi, S.; Fernandez-Gamiz, U.; Noeiaghdam, S.; Santra, S.S.: Hydrocephalic cerebrospinal fluid flowing rotationally with pulsatile boundaries: a mathematical simulation of the thermodynamical approach. Theor. Appl. Mech. Lett. 13(1), 100418 (2023)

    Article  Google Scholar 

  33. Anwar, T.; Kumam, P.; Shah, Z.; Watthayu, W.; Thounthong, P.: Unsteady radiative natural convective MHD nanofluid flow past a porous moving vertical plate with heat source/sink. Molecules 25, 854 (2020)

    Article  Google Scholar 

  34. Aminossadati, S.M.; Ghasemi, B.: Natural convection cooling of a localised heat source at the bottom of a nanofluid-filled enclosure. Eur. J. Mech. B/Fluids 28(5), 630–640 (2009)

  35. Brinkman, H.C.: The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 20(4), 571–571 (1952)

  36. Bourantas, G.C.; Loukopoulos, V.C.: Modeling the natural convective flow of micropolar nanofluids. Int. J. Heat Mass Transf. 68, 35–41 (2014)

    Article  Google Scholar 

  37. Hamilton, R.L.; Crosser, O.K.: Thermal conductivity of heterogeneous two-component systems. Ind. Eng. Chem. Fundam. 1(3), 187–191 (1962)

    Article  Google Scholar 

  38. Ghadikolaei, S.S.; Yassari, M.; Sadeghi, H.; Hosseinzadeh, K.; Ganji, D.D.: Investigation on thermophysical properties of TiO\({}_{3}\)-Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow. Powder Technol. 322, 428–438 (2017)

    Article  Google Scholar 

  39. Rosseland, S.: Auf Atomtheoretischer Grundlage. Springer-Verlag, Berlin (1931)

    Book  Google Scholar 

  40. Nandi, S.; Kumbhakar, B.: Unsteady MHD free convective flow past a permeable vertical plate with periodic movement and slippage in the presence of Hall current and rotation. Therm. Sci. Eng. Prog. 19, 100561 (2020)

    Article  Google Scholar 

  41. Page, L.; Wilbur R.: Complex Variables and the Laplace Transform for Engineers. Courier Corporation (1980)

  42. Iqbal, Z.; Mehmood, R.; Ahmad, B.; Maraj, E.N.: Combined impact of viscosity variation and Lorentz force on slip flow of radiative nanofluid towards a vertical stretching surface with convective heat and mass transfer. Alex. Eng. J. 57(4), 3189–97 (2018)

    Article  Google Scholar 

  43. Abu-Nada, E.; Oztop, H.F.: Effects of inclination angle on natural convection in enclosures filled with Cu–water nanofluid. Int. J. Heat Fluid Flow 30(4), 669–78 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the reviewer’s valuable comments and suggestions that improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Nandi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arulmozhi, S., Sukkiramathi, K., Santra, S.S. et al. Impact of Thermal Radiation on Water-Based Hybrid Nanofluid (\(\hbox {Cu}\)\(\hbox {Al}_2\hbox {O}_3\)\(\hbox {H}_2\hbox {O}\)) Flow Over a Forward/Backward Moving Vertical Porous Plate. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-09108-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-09108-0

Keywords

Navigation