Skip to main content
Log in

Biomechanics of Swimming Microbes in Atherosclerotic Region with Infusion of Nanoparticles

  • Research Article-Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study is focused to investigate the blood flow pattern with motion of motile gyrotactic microorganisms. Since nanoparticles play an essential factor for enhancing delivery efficiency in vascular flow therefore physiochemical properties of these particles are considered in this examination. Prandtl fluid characteristics are instigated to discuss the blood flow rheology. Moreover, considerations of gyrotactic microbes with nanoparticles will exaggerate the thermal features of considered base fluid. The governing model output containing coupled nonlinear systems is evaluated by HPM technique. The features of flow defining parameters in an anisotropic stenotic region with motile microbes are inspected and presented through different illustrations. It is concluded from the governing nanofluid model that with addition of gyrotactic microbe’s hemodynamics factors of stenotic lesion are enhanced. Heat transfer rate phenomena depict opposite trends for nanoparticles key parameters involved in a governing problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Abbreviations

\({\vartheta }\) :

Average volume of the microorganism

\(n\) :

Concentration of the microorganism

\({\rho }_{p}\), \({\rho }_{m}\) :

Density of the nanoparticles and microorganism, respectively

\({T}_{e}\) :

Base fluid volumetric coefficient

\({\overline{D} }_{T}\),\({\overline{D} }_{B}\) :

Brownian diffusion terms

\({k}_{f}\) :

Coefficient of thermal conductivity

\(\tau \) :

Ratio of nanoparticle material heat capacity to fluid heat capacity

\((\rho c{)}_{f}, (\rho c{)}_{p}\) :

Coefficients of volumetric heat capacity and nanoparticle

\({T}_{g}\) :

Local temperature Grashof number

\({N}_{g}\) :

Local nanoparticle Grashof number

\({R}_{b}\) :

Bioconvection Rayleigh number

\({T}_{b}\),\({T}_{t}\) :

Brownian motion and thermophoresis terms

\({P}_{t}\) :

Peclet number

\(\Theta \) :

Constant term

\(\alpha , \beta \) :

Fluid features defining parameter

\(\chi \) :

Motile microbe’s movement expression

References

  1. Young, D.F.: The fluid mechanics of arterial stenosis. J. Biomech. Eng. Trans. ASME 101, 157–175 (1979)

    Article  Google Scholar 

  2. Giddens, D.P.; Zarins, C.K.; Glagov, S.: The role of fluid mechanics in the localization and detection of atherosclerosis. J. Biomech. Eng. Trans. ASME 115, 538–594 (1993)

    Article  Google Scholar 

  3. Beech-Brandt, M.X.; John, J.J.; Hoskins, L.R.; Easson, W.J.: Numerical analysis of pulsatile blood flow and vessel wall mechanics in different degrees of stenosis. J. Biomech. 40, 3715–3724 (2007)

    Article  Google Scholar 

  4. Mann, F.C.; Herrick, J.F.; Essex, H.E.; Blades, E.J.: Effects on blood flow of decreasing the lumen of blood vessels. Surgery 4, 249–252 (1938)

    Google Scholar 

  5. Back, L.H.: Estimated mean flow resistance increase during coronary artery catheterization. J. Biomech. 27, 169–175 (1994)

    Article  Google Scholar 

  6. Texon, M.: A hemodynamic concept of atherosclerosis with particular reference to coronary occlusion. Arch. Intern. Med. 99, 418–430 (1957)

    Article  Google Scholar 

  7. Stegiopulos, N.; Spiridon, M.; Pythoud, F.; Meister, J.J.: Numerical study of pulsating flow through a tapered artery with stenosis. J. Biomench. 29, 29–40 (1996)

    Google Scholar 

  8. Young, D.F.; Tsai, F.Y.: Flow characteristics in model of arterial stenosis steady flow. J. Biomech. 6, 395–410 (1973)

    Article  Google Scholar 

  9. Siegel, J.M.; Markou, C.P.; Hanson, S.R.: A scaling law for wall shear rate through an arterial stenosis. J. Biomech. Eng. Trans. ASME 116, 446–451 (1994)

    Article  Google Scholar 

  10. Tian, F.; Zhu, L.; Fok, P.; Lu, X.: Simulation of a pulsatile non-Newtonian flow past a stenosed 2D artery with atherosclerosis. Comput. Biol. Med. 43, 1098–1113 (2013)

    Article  Google Scholar 

  11. Rabby, M.G.; Sultana, R.; Shupti, S.P.; Molla, M.M.: Laminar blood flow through a model of arterial stenosis with oscillating wall. Int. J. Fluid Mech. 41, 417–429 (2014)

    Article  Google Scholar 

  12. Karahalios, G.T.: Some possible effects of a catheter on the arterial wall. Med. Phys. 17, 922–932 (1990)

    Article  Google Scholar 

  13. Bjorno, L.; Pettersson, H.M.: Hydro- and hemodynamic effects of catheterization of vessels; experiments with a rigid-walled model. Acta Radiol. Diagn. 18, 1–16 (1977)

    Article  Google Scholar 

  14. Srivastava, V.P.; Rastogi, R.: Blood flow through a stenosed catheterized artery: Effects of hematocrit and stenosis shape. Comput. Math. Appl. 59, 1377–1385 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sankar, D.S.; Hemlatha, K.: Pulsatile flow of Herschel Bulkley fluid through catheterized arteries a mathematical model. Appl. Math. Modell. 31, 1497–1517 (2007)

    Article  MATH  Google Scholar 

  16. Jiang, Y.; Reynolds, C.; Xiao, C.; Feng, W.; Zhou, Z.; Rodriguez, W.; Tyagi, S.C.; Eaton, J.W.; Saari, J.T.; Kang, Y.J.: Dietary copper supplementation reverses hypertrophic cardiomyopathy induced by chronic pressure overload in mice. J. Exp. Med. 204, 657–666 (2007)

    Article  Google Scholar 

  17. Wagner, V.; Dullaart, A.; Bock, A.-K.; Zweck, A.: The emerging nanomedicine landscape. Nat. Biotechnol. 24, 1211–1217 (2006)

    Article  Google Scholar 

  18. Godin, B.; Sakamoto, J.H.; Serda, R.E.; Grattoni, A.; Bouamrani, A.; Ferrari, M.: Emerging applications of nanomedicine for the diagnosis and treatment of cardiovascular diseases. Trends Pharmacol. Sci. 31, 199–205 (2010)

    Article  Google Scholar 

  19. Shaw, P.V.S.N.; Murthy, P.: Sibanda, Magnetic drug targeting in a permeable micro vessel. Microvasc. Res. 85, 77–85 (2013)

    Article  Google Scholar 

  20. Fullstone, G., Wood, J., Holcombe, M., Battaglia, G.: Modelling the transport of nanoparticles under blood flow using an agent-based approach. Sci. Rep. 10649 (2015)

  21. Li, Z.; Wei, L.; Gao, M.Y.; Lei, H.: One-pot reaction to synthesize biocompatible magnetite nanoparticles. Adv. Mater. 17, 1001–1005 (2005)

    Article  Google Scholar 

  22. Nadeem, S.; Ijaz, S.: Biomedical theoretical investigation of blood mediated nanoparticles (Ag-Al2O3/blood) impact on haemodynamics of overlapped stenotic artery. J. Mol. Liq. 248, 809–821 (2018)

    Google Scholar 

  23. Ali, Z.; Zeeshan, A.; Bhatti, M.M.; Hobiny, A.; Saeed, T.: Insight into the dynamics of oldroyd-B fluid over an upper horizontal surface of a paraboloid of revolution subject to chemical reaction dependent on the first-order activation energy. Arab. J. Sci. Eng. 46, 6039–6048 (2021)

    Article  Google Scholar 

  24. Mahanthesh, B.: Flow and heat transport of nanomaterial with quadratic radiative heat flux and aggregation kinematics of nanoparticles. Int. Commun. Heat Mass Transf. 127, 105521 (2021)

    Article  Google Scholar 

  25. Mebarek-Oudina, F.; Aissa, A.; Mahanthesh, B.; Öztop, H.F.: Heat transport of magnetized Newtonian nanoliquids in an annular space between porous vertical cylinders with discrete heat source. Int. Commun. Heat Mass Transf. 117, 104737 (2020)

    Article  Google Scholar 

  26. Hang, L.Z.; Bhatti, M.M.; Shahid, A.; Ellahi, R.; Beg, O.A.; Sait: Nonlinear nanofluid fluid flow under the consequences of Lorentz forces and Arrhenius kinetics through a permeable surface: a robust spectral approach. J. Taiwan Inst. Chem. Eng. 124, 98–105 (2021)

    Article  Google Scholar 

  27. Mebarek-Oudina, F.; Bessaih, R.; Mahanthesh, B.; Chamkha, A.J.; Raza, J.: Magneto-thermal-convection stability in an inclined cylindrical annulus filled with a molten metal. Int. J. Numer. Methods Heat Fluid 31, 1172–1189 (2020)

    Article  Google Scholar 

  28. Mahanthesh, B.; Thriveni, K.; Lorenzini, G.: Significance of nonlinear Boussinesq approximation and non-uniform heat source/sink on nanoliquid flow with convective heat condition: sensitivity analysis. Eur. Phys. J. Plus 136, 418 (2021)

    Article  Google Scholar 

  29. Thriveni, K.; Mahanthesh, B.: Sensitivity analysis of nonlinear radiated heat transport of hybrid nanoliquid in an annulus subjected to the nonlinear Boussinesq approximation. J. Therm. Anal. Calorim. 143, 2729–2748 (2021)

    Article  MATH  Google Scholar 

  30. Bhatti, M.M.; Al-Khaled, K.; Ullah Khan, S.; Chammam, W.; Awais, M.: Darcy-Forchheimer higher-order slip flow of Eyring-Powell nanofluid with nonlinear thermal radiation and bioconvection phenomenon. J. Dispers. Sci. Technol. (2021). https://doi.org/10.1080/01932691.2021.1942035

    Article  Google Scholar 

  31. Mahanthesh, B.; Mackolil, J.: Flow of nanoliquid past a vertical plate with novel quadratic thermal radiation and quadratic Boussinesq approximation: Sensitivity analysis. Int. Commun. Heat Mass Transf. 120, 105040 (2021)

    Article  Google Scholar 

  32. Mahanthesh, B.; Mackolil, J.; Radhika, M.: Wael Al-Kouz, Siddabasappa, Significance of quadratic thermal radiation and quadratic convection on boundary layer two-phase flow of a dusty nanoliquid past a vertical plate. Int. Commun. Heat Mass (2021). https://doi.org/10.1016/j.icheatmasstransfer.2020.105029

    Article  Google Scholar 

  33. Mahanthesh, B.; Shashikumar, N.S.; Lorenzini, G.: Heat transfer enhancement due to nanoparticles, magnetic field, thermal and exponential space-dependent heat source aspects in nanoliquid flow past a stretchable spinning disk. J. Therm. Anal. Calorim. 145, 3339–3347 (2021)

    Article  Google Scholar 

  34. Mahanthesh, B.; Shehzad, S.A.; Ambreen, T.; Khan, S.U.: Significance of Joule heating and viscous heating on heat transport of MoS2–Ag hybrid nanofluid past an isothermal wedge. J. Therm. Anal. Calorim. 143, 1221–1229 (2021)

    Article  Google Scholar 

  35. Kuznetsov, A.V.; Avramenko, A.A.: Effect of small particles on this stability of bioconvection in a suspension of gyrotactic microorganisms in a layer of finite depth. Int. Commun. Heat Mass. 31, 1–10 (2004)

    Article  Google Scholar 

  36. Bhatti, M.M.; Zeeshan, A.; Elahi, R.: Simultaneous effects of coagulation and variable magnetic field on peristaltically induced motion of Jeffrey nanofluid, containing gyrotactic microorganism. Microvasc. Res. 110, 32–42 (2017)

    Article  Google Scholar 

  37. Akbar, N.S.: Bioconvection peristaltic flow in an asymmetric channel filled by nanofluid containing gyrotactic microorganism: bio nano engineering model. Int. J. Numer. Method H. 25, 214–224 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Beg, O.A.; Prasad, V.R.; Vasu, B.: Numerical study of mixed bioconvection in porous media saturated with nanofluid containing oxytactic microorganisms. J. Mech. Med. Biol. 13, 1350067 (2013)

    Article  Google Scholar 

  39. Ahmed, S.E.; Mahdi, A.: Laminar MHD natural convection of nanofluid containing gyrotactic microorganisms over vertical wavy surface saturated non-Darcian porous media. Appl. Math Mech. 37, 471–484 (2016)

    Article  MathSciNet  Google Scholar 

  40. Chakraborty, T.; Das, K.; Kundu, P.K.: Framing the impact of external magnetic field on bioconvection of a nanofluid flow containing gyrotactic microorganisms with convective boundary conditions. Alex. Eng. J. 57, 61–71 (2018)

    Article  Google Scholar 

  41. Bhatti, M.M.; Marin, M.; Zeehaan, A.; Ellahi, R.; Abdelsalam, S.I.: Swimming of Motile gyrotactic microorganisms and nanoparticles in blood flow through anisotropically tapered arteries. Front. Phys. 8, 95 (2020)

    Article  Google Scholar 

  42. He, J.H.: Homotopy Perturbation technique. Comput. Methods Appl. Mech. Eng. 178, 257–262 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  43. He, J.H.: New interpretation of Homotopy perturbation method. Int. J. Mod. Phys. B 20, 561–2568 (2006)

    Article  Google Scholar 

  44. Patel, M.; Timol, M.G.: The stress-strain relationship for viscoelastic non-Newtonian fluids. Int. J. Appl. Math. Mech. 6, 79–93 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ijaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ijaz, S., Batool, M., Mehmood, R. et al. Biomechanics of Swimming Microbes in Atherosclerotic Region with Infusion of Nanoparticles. Arab J Sci Eng 47, 6773–6786 (2022). https://doi.org/10.1007/s13369-021-06241-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06241-y

Keywords

Navigation