Skip to main content
Log in

Development of Porous WO3/SAPO-34 Solid Catalyst for the Conversion of Glycerol to Fuel Performance Improving Bio-additive (Solketal)

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The present investigation describes the development of environmentally benign WO3/SAPO-34 solid acid catalyst for glycerol valorization to solketal. Various spectroscopic techniques (XRD, FT-IR, TGA, BET, SEM, EDX and TPD) were employed to evaluate its physiochemical characteristic and determination of acid sites density of the designed catalyst. The optimization of reaction influencing parameters was prudently investigated. The experimental results demonstrated that the catalyst with 20 wt% WO3 loading exhibited an excellent acetalization performance, providing solketal yield of 96.7% with glycerol/acetone ratio of 1:8, catalyst loading of 5 wt% and reaction time of 4 h at 60 °C temperature. The FTIR and GC–MS analysis justified the successful formation of solketal. Similarly, the WO3/SAPO-34 catalyst sustained quite good repeatability for up to 5 reaction cycles with no significant loss in the activity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1:
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. AlObaid, A.A.; Rouf, S.A.; Al-Muhimeed, T.I.; Aljameel, A.; Bouzgarrou, S.; Hegazy, H.; Alshahrani, T.; Nazir, G.; Mera, A.; Mahmood, Q.: New lead-free double perovskites (Rb2GeCl/Br) 6; a promising materials for renewable energy applications. Mater. Chem. Phys. 271, 124876 (2021)

    Article  Google Scholar 

  2. Miao, Z.; Li, Z.; Liang, M.; Meng, J.; Zhao, Y.; Xu, L.; Mu, J.; Zhou, J.; Zhuo, S.; Si, W.: Ordered mesoporous titanium phosphate material: a highly efficient, robust and reusable solid acid catalyst for acetalization of glycerol. Chem. Eng. J. 381, 122594 (2020)

    Article  Google Scholar 

  3. Nisar, J.; Razaq, R.; Farooq, M.; Iqbal, M.; Khan, R.A.; Sayed, M.; Shah, A.; Rahman, I.: Enhanced biodiesel production from Jatropha oil using calcined waste animal bones as catalyst. Renew. Energy 101, 111–119 (2017)

    Article  Google Scholar 

  4. Farooq, M.; Ramli, A.; Naeem, A.: Biodiesel production from low FFA waste cooking oil using heterogeneous catalyst derived from chicken bones. Renew. Energy 76, 362–368 (2015)

    Article  Google Scholar 

  5. Khan, I.W.; Naeem, A.; Farooq, M.; Din, I.U.; Ghazi, Z.A.; Saeed, T.: Reusable Na-SiO2@CeO2catalyst for efficient biodiesel production from non-edible wild olive oil as a new and potential feedstock. Energy Convers. Manag. 231, 113854 (2021)

    Article  Google Scholar 

  6. Naeem, A.; Wali Khan, I.; Farooq, M.; Mahmood, T.; Ud Din, I.; Ali Ghazi, Z.; Saeed, T.: Kinetic and optimization study of sustainable biodiesel production from waste cooking oil using novel heterogeneous solid base catalyst. Bioresour. Technol. 328, 124831 (2021)

    Article  Google Scholar 

  7. Pinto, B.P.; Nascimento, J.A.; Mota, C.J.; Calado, V.M.: Synthesis of solketal fuel additive from acetone and glycerol using CO2 as switchable catalyst. Front. Energy Res. 7, 58 (2019)

    Article  Google Scholar 

  8. Timofeeva, M.N.; Panchenko, V.N.; Krupskaya, V.V.; Gil, A.; Vicente, M.A.: Effect of nitric acid modification of montmorillonite clay on synthesis of solketal from glycerol and acetone. Catal. Commun. 90, 65–69 (2017)

    Article  Google Scholar 

  9. Moreira, M.N.; Corrêa, I.; Ribeiro, A.M.; Rodrigues, A.R.E.; Faria, R.P.: Solketal production in a fixed bed adsorptive reactor through the ketalization of glycerol. Ind. Eng. Chem. Res. 59(7), 2805–2816 (2020)

    Article  Google Scholar 

  10. Kaur, J.; Gera, P.; Jha, M.; Sarma, A.K.: A study on conversion of glycerol into solketal using rice husk-derived catalyst. In: Advances in Energy Research, vol. 2, pp. 599–606. Springer (2020)

  11. da Silva, M.J.; Rodrigues, A.A.; Pinheiro, P.F.: Solketal synthesis from glycerol and acetone in the presence of metal salts: a Lewis or Brønsted acid catalyzed reaction? Fuel 276, 118164 (2020)

    Article  Google Scholar 

  12. Laskar, I.B.; Rajkumari, K.; Gupta, R.; Rokhum, L.: Acid-functionalized mesoporous polymer-catalyzed acetalization of glycerol to solketal, a potential fuel additive under solvent-free conditions. Energy Fuels 32(12), 12567–12576 (2018)

    Article  Google Scholar 

  13. Jamil, F.; Saxena, S.K.; Ala’a, H.; Baawain, M.; Al-Abri, M.; Viswanadham, N.; Kumar, G.; Abu-Jrai, A.M.: Valorization of waste “date seeds” bio-glycerol for synthesizing oxidative green fuel additive. J. Clean. Prod. 165, 1090–1096 (2017)

    Article  Google Scholar 

  14. Li, X.; Jiang, Y.; Zhou, R.; Hou, Z.: Layered α-zirconium phosphate: an efficient catalyst for the synthesis of solketal from glycerol. Appl. Clay Sci. 174, 120–126 (2019)

    Article  Google Scholar 

  15. Hussein, H.; Vivian, A.; Fusaro, L.; Devillers, M.; Aprile, C.: Synthesis of highly accessible gallosilicates via impregnation procedure: enhanced catalytic performances in the conversion of glycerol into solketal. ChemCatChem 12, 5966–5976 (2020)

    Article  Google Scholar 

  16. Zahid, I.; Ayoub, M.; Abdullah, B.B.; Nazir, M.H.; Ameen, M.; Zulqarnain; Mohd Yusoff, M.H.; Inayat, A.; Danish, M.: Production of fuel additive solketal via catalytic conversion of biodiesel-derived glycerol. Ind. Eng. Chem. Res. 59, 20961–20978 (2020)

    Article  Google Scholar 

  17. Sawin, J.L.; Sverrisson, F.; Rutovitz, J.; Dwyer, S.; Teske, S.; Murdock, H.E.; Adib, R.; Guerra, F.; Blanning, L.H.; Hamirwasia, V.: Renewables 2018-global status report. A comprehensive annual overview of the state of renewable energy. Advancing the global renewable energy transition-highlights of the REN21 renewables 2018 global status report in perspective (2018)

  18. Aghbashlo, M.; Tabatabaei, M.; Hosseinpour, S.; Rastegari, H.; Ghaziaskar, H.S.: Multi-objective exergy-based optimization of continuous glycerol ketalization to synthesize solketal as a biodiesel additive in subcritical acetone. Energy Convers. Manag. 160, 251–261 (2018)

    Article  Google Scholar 

  19. Fertier, L.; Ibert, M.; Buffe, C.; Saint-Loup, R.; Joly-Duhamel, C.; Robin, J.-J.; Giani, O.: New biosourced UV curable coatings based on isosorbide. Prog. Org. Coat. 99, 393–399 (2016)

    Article  Google Scholar 

  20. Nomura, T.; Ueura, H.; Tanaka, Y.; IIda, Y.; Yuan, Z.; Ando, A.: The effect of gasoline metallic additives on low speed pre-ignition, SAE technical paper (2018)

  21. Hoekman, S.K.; Broch, A.: MMT effects on gasoline vehicles: a literature review. SAE Int. J. Fuels Lubr. 9(1), 322–343 (2016)

    Article  Google Scholar 

  22. Ilgen, O.; Yerlikaya, S.; Akyurek, F.O.: Synthesis of solketal from glycerol and acetone over amberlyst-46 to produce an oxygenated fuel additive. Periodica Polytech. Chem. Eng. 61(2), 144–148 (2017)

    Google Scholar 

  23. Vasantha, V.T.; Venkatesha, N.J.; Shamshuddin, S.Z.M.; D’Souza, J.Q.; Reddy, B.G.V.: Sulphated zirconia supported on cordierite honeycomb monolith for effective synthesis of solketal from acetalisation of glycerol with acetone. ChemistrySelect 3(2), 602–608 (2018)

    Article  Google Scholar 

  24. de Carvalho, D.C.; Oliveira, A.C.; Ferreira, O.P.; Josué Filho, M.; Tehuacanero-Cuapa, S.; Oliveira, A.C.: Titanate nanotubes as acid catalysts for acetalization of glycerol with acetone: influence of the synthesis time and the role of structure on the catalytic performance. Chem. Eng. J. 313, 1454–1467 (2017)

    Article  Google Scholar 

  25. Li, X.; Zheng, L.; Hou, Z.: Acetalization of glycerol with acetone over Co [II](Co [III] xAl2−x) O4 derived from layered double hydroxide. Fuel 233, 565–571 (2018)

    Article  Google Scholar 

  26. da Silva, M.J.; Teixeira, M.G.; Chaves, D.M.; Siqueira, L.: An efficient process to synthesize solketal from glycerol over tin (II) silicotungstate catalyst. Fuel 281, 118724 (2020)

    Article  Google Scholar 

  27. Chen, L.; Nohair, B.; Zhao, D.; Kaliaguine, S.: Glycerol acetalization with formaldehyde using heteropolyacid salts supported on mesostructured silica. Appl. Catal. A 549, 207–215 (2018)

    Article  Google Scholar 

  28. Rossa, V.; Díaz, G.C.; Muchave, G.J.; Aranda, D.A.G.; Pergher, S.B.C.: Production of Solketal Using Acid Zeolites as Catalysts, Glycerine Production and Transformation-An Innovative Platform for Sustainable Biorefinery and Energy. IntechOpen, London (2019)

    Google Scholar 

  29. Chen, L.; Nohair, B.; Zhao, D.; Kaliaguine, S.: Highly efficient glycerol acetalization over supported heteropoly acid catalysts. ChemCatChem 10(8), 1918–1925 (2018)

    Article  Google Scholar 

  30. Alali, K.; Lebsir, F.; Amri, S.; Rahmouni, A.; Srasra, E.; Besbes, N.: Algerian acid activated clays as efficient catalysts for a green synthesis of solketal by chemoselective acetalization of glycerol with acetone. Bull. Chem. React. Eng. Catal. 14(1), 130–141 (2019)

    Article  Google Scholar 

  31. Fatimah, I.; Sahroni, I.; Fadillah, G.; Musawwa, M.M.; Mahlia, T.M.I.; Muraza, O.: Glycerol to solketal for fuel additive: recent progress in heterogeneous catalysts. Energies 12(15), 2872 (2019)

    Article  Google Scholar 

  32. Domínguez-Barroso, V.; Herrera, C.; Larrubia, M.Á.; González-Gil, R.; Cortés-Reyes, M.; Alemany, L.J.: Continuous-flow process for glycerol conversion to solketal using a Brönsted acid functionalized carbon-based catalyst. Catalysts 9(7), 609 (2019)

    Article  Google Scholar 

  33. Bakuru, V.R.; Churipard, S.R.; Maradur, S.P.; Kalidindi, S.B.: Exploring the Brønsted acidity of UiO-66 (Zr, Ce, Hf) metal–organic frameworks for efficient solketal synthesis from glycerol acetalization. Dalton Trans. 48(3), 843–847 (2019)

    Article  Google Scholar 

  34. Feliczak-Guzik, A.; Nowak, I.: Application of glycerol to synthesis of solvo-surfactants by using mesoporous materials containing niobium. Microporous Mesoporous Mater. 277, 301–308 (2019)

    Article  Google Scholar 

  35. Gomes, I.S.; De Carvalho, D.C.; Oliveira, A.C.; Rodríguez-Castellón, E.; Tehuacanero-Cuapa, S.; Freire, P.T.; Josué Filho, M.; Saraiva, G.D.; de Sousa, F.F.; Lang, R.: On the reasons for deactivation of titanate nanotubes with metals catalysts in the acetalization of glycerol with acetone. Chem. Eng. J. 334, 1927–1942 (2018)

    Article  Google Scholar 

  36. Talebian-Kiakalaieh, A.; Amin, S.; Saidina, N.A.; Tarighi, S.; Najaafi, N.: A review on the catalytic acetalization of bio-renewable glycerol to fuel additives. Front. Chem. 6, 573 (2018)

    Article  Google Scholar 

  37. Talebian-Kiakalaieh, A.; Tarighi, S.: Hierarchical faujasite zeolite-supported heteropoly acid catalyst for acetalization of crude-glycerol to fuel additives. J. Ind. Eng. Chem. 79, 452–464 (2019)

    Article  Google Scholar 

  38. Zhong, J.; Han, J.; Wei, Y.; Tian, P.; Guo, X.; Song, C.; Liu, Z.: Recent advances of the nano-hierarchical SAPO-34 in the methanol-to-olefin (MTO) reaction and other applications. Catal. Sci. Technol. 7(21), 4905–4923 (2017)

    Article  Google Scholar 

  39. Wu, Y.; Chen, Z.; Li, B.; Xing, J.; Liu, H.; Tong, Y.; Tian, P.; Xu, Y.; Liu, Z.: Highly selective adsorption of CO over N2 on CuCl-loaded SAPO-34 adsorbent. J. Energy Chem. 36, 122–128 (2019)

    Article  Google Scholar 

  40. Li, M.; Chen, J.; Li, L.; Ye, C.; Lin, X.; Qiu, T.: Novel multi-SO3H functionalized ionic liquids as highly efficient catalyst for synthesis of biodiesel. Green Energy Environ. 6(2), 271–282 (2021)

    Article  Google Scholar 

  41. Islam, M.G.U.; Jan, M.T.; Farooq, M.; Naeem, A.; Khan, I.W.; Khattak, H.U.: Biodiesel production from wild olive oil using TPA decorated Cr–Al acid heterogeneous catalyst. Chem. Eng. Res. Des. 178, 540–549 (2022)

    Article  Google Scholar 

  42. Mohebbi, S.; Rostamizadeh, M.; Kahforoushan, D.: Effect of molybdenum promoter on performance of high silica MoO3/B-ZSM-5 nanocatalyst in biodiesel production. Fuel 266, 117063 (2020)

    Article  Google Scholar 

  43. Ketzer, F.; Celante, D.; de Castilhos, F.: Catalytic performance and ultrasonic-assisted impregnation effects on WO3/USY zeolites in esterification of oleic acid with methyl acetate. Microporous Mesoporous Mater. 291, 109704 (2020)

    Article  Google Scholar 

  44. Aravindraj, K.; Mohana Roopan, S.: WO3-based materials as heterogeneous catalysts for diverse organic transformations: a mini-review. Synth. Commun. 52(13–14), 1457–1476 (2022)

    Article  Google Scholar 

  45. Perveen, F.; Farooq, M.; Ramli, A.; Naeem, A.; Khan, I.W.; Saeed, T.; Khan, J.: Levulinic acid production from waste corncob biomass using an environmentally benign WO3-grafted ZnCo2O4@ CeO2 bifunctional heterogeneous catalyst. ACS Omega 8, 333–345 (2022)

    Article  Google Scholar 

  46. Ferreira, C.; Araujo, A.; Calvino-Casilda, V.; Cutrufello, M.; Rombi, E.; Fonseca, A.; Bañares, M.; Neves, I.C.: Y zeolite-supported niobium pentoxide catalysts for the glycerol acetalization reaction. Microporous Mesoporous Mater. 271, 243–251 (2018)

    Article  Google Scholar 

  47. Akalin, G.O.; Oztuna Taner, O.; Taner, T.: The preparation, characterization and antibacterial properties of chitosan/pectin silver nanoparticle films. Polym. Bull. 79(6), 3495–3512 (2022)

    Article  Google Scholar 

  48. Liu, Y.; Xiao, W.; Xiao, S.: Influence of phosphorous contents on Si incorporation mechanism and properties of SAPO-34. Adv. Powder Technol. 27(2), 625–630 (2016)

    Article  Google Scholar 

  49. Zheng, T.; Liu, H.; He, P.; Zhang, R.; Meng, X.; Xu, C.; Liu, H.; Yue, Y.; Liu, Z.: Post synthesis of hierarchical SAPO-34 via citric acid etching: mechanism of selective desilication. Microporous Mesoporous Mater. 335, 111798 (2022)

    Article  Google Scholar 

  50. Cong, W.; Xu, C.; Mu, Y.; Li, Q.; Bing, L.; Wang, F.; Han, D.; Wang, G.: PtCo nanoparticles supported on hierarchical SAPO-34 for hydrolysis of ammonia borane and tandem reduction of 4-nitrophenol. Catal. Today 402, 27–37 (2022)

    Article  Google Scholar 

  51. Bellatreche, S.; Hasnaoui, A.; Boukoussa, B.; García-Aguilar, J.; Berenguer-Murcia, Á.; Cazorla-Amoros, D.; Bengueddach, A.: Structural and textural features of TiO 2/SAPO-34 nanocomposite prepared by the sol–gel method. Res. Chem. Intermed. 42(12), 8039–8053 (2016)

    Article  Google Scholar 

  52. Mirza, K.; Ghadiri, M.; Haghighi, M.; Afghan, A.: Hydrothermal synthesize of modified Fe, Ag and K-SAPO-34 nanostructured catalysts used in methanol conversion to light olefins. Microporous Mesoporous Mater. 260, 155–165 (2018)

    Article  Google Scholar 

  53. Zhao, L.; Xi, X.; Liu, Y.; Ma, L.; Nie, Z.: Facile synthesis of WO3 micro/nanostructures by paper-assisted calcination for visible-light-driven photocatalysis. Chem. Phys. 528, 110515 (2020)

    Article  Google Scholar 

  54. Varzaneh, A.Z.; Towfighi, J.; Kootenaei, A.H.S.; Mohamadalizadeh, A.: Effect of cerium and zirconium nanoparticles on the structure and catalytic performance of SAPO-34 in steam cracking of naphtha to light olefins. React. Kinet. Mech. Catal. 115(2), 719–740 (2015)

    Article  Google Scholar 

  55. Masoumi, S.; Towfighi, J.; Mohamadalizadeh, A.; Kooshki, Z.; Rahimi, K.: Tri-templates synthesis of SAPO-34 and its performance in MTO reaction by statistical design of experiments. Appl. Catal. A 493, 103–111 (2015)

    Article  Google Scholar 

  56. Oztuna Taner, O.; Ekici, L.; Akyuz, L.: CMC-based edible coating composite films from Brewer’s spent grain waste: a novel approach for the fresh strawberry package. Polym. Bull. 80(8), 9033–9058 (2023)

    Article  Google Scholar 

  57. Niu, P.; Ren, X.; Xiong, D.; Ding, S.; Li, Y.; Wei, Z.; Chen, X.: Synthesis of highly selective and stable Co–Cr/SAPO-34 catalyst for the catalytic dehydration of ethanol to ethylene. Catalysts 10(7), 785 (2020)

    Article  Google Scholar 

  58. Ao, S.; Alghamdi, L.A.; Kress, T.; Selvaraj, M.; Halder, G.; Wheatley, A.E.; Rokhum, S.L.: Microwave-assisted valorization of glycerol to solketal using biomass-derived heterogeneous catalyst. Fuel 345, 128190 (2023)

    Article  Google Scholar 

  59. Perez, F.M.; Legarto, C.; Lombardi, M.B.; Santori, G.F.; Pompeo, F.; Nichio, N.N.: Activated bentonite nanocomposite for the synthesis of solketal from glycerol in the liquid phase. Catalysts 12(6), 673 (2022)

    Article  Google Scholar 

  60. Huang, H.; Mu, J.; Liang, M.; Qi, R.; Wu, M.; Xu, L.; Xu, H.; Zhao, J.; Zhou, J.; Miao, Z.: One-pot synthesis of MoO3–ZrO2 solid acid catalyst for solvent-free solketal production from glycerol. Mol. Catal. 552, 113682 (2024)

    Article  Google Scholar 

  61. Ao, S.; Rokhum, S.L.: Biomass derived heterogenous catalyst for synthesis of solketal from biodiesel byproduct glycerol. Sci. Talks 8, 100264 (2023)

    Article  Google Scholar 

  62. Zahid, I.; Ayoub, M.; Nazir, M.H.; Sher, F.; Shamsuddin, R.; Abdullah, B.B.; Ameen, M.: Kinetic & thermodynamic studies of green fuel additive solketal from crude glycerol over metakaolin clay catalyst. Biomass Bioenergy 181, 107029 (2024)

    Article  Google Scholar 

  63. Zahid, I.; Ayoub, M.; Abdullah, B.B.; Nazir, M.H.: Glycerol derivatives as fuel additive: synthesis of solketal from glycerol and acetone with various acid clay catalysts. In: Third International Conference on Separation Technology 2020 (ICoST 2020), pp. 292–296. Atlantis Press (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Farooq or Ihtisham Wali Khan.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 34 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farooq, M., Zaid, F., Ramli, A. et al. Development of Porous WO3/SAPO-34 Solid Catalyst for the Conversion of Glycerol to Fuel Performance Improving Bio-additive (Solketal). Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-09084-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-09084-5

Keywords

Navigation