Skip to main content
Log in

Monitoring of Weld Bead Profile in Friction Stir Lap Welding for Polycarbonate Sheets Using Wavelet Packets of Power Signal

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The solid-state friction stir welding is found to be popular for the joining of thermoplastic materials in different configurations. However, the process variables have to be precisely adjusted with proper selection of tool pin profile to achieve uniform longitudinal weld along the tool traversing direction. The axial thrust and tool stirring torque signals are often used for the process monitoring and associated weld quality prediction. The present work addresses the effect of swept ratio of tool pin contour on the degree of non-uniformity in lap weld profile and index of symmetries in weld bead shape with associated mechanical behavior in tensile–shear loading for polycarbonate sheets. The hexagonal tool pin was found to be the best in terms of stability in weld contour, flawless symmetric weld bead shape with the highest strength efficiency (75.4%) and improved joint ductility particularly at high tool revolving speed (2400 rpm). The input power signal along with thrust–torque signals have also been acquired during welding procedure that was found to be chief indicator of weld quality. The electrical power loss was significantly less at higher tool rotational speed by using this hexagonal tool pin. Thus, this time field power signal has been further analyzed in time–frequency wavelet domain to completely characterize the process variations with corresponding deviations in weld profile. The high-frequency power wavelets were found to be highly sensitive on the deviations in weld quality features though low-frequency power information mainly dictated the variations in weld bead profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

PC-PC:

Polycarbonate to polycarbonate lap

CY, HX, SQ:

Cylindrical, hexagonal, and square pin profile

S-ratio(r) :

Swept ratio

N :

Tool rotational speed, rpm

V :

Traverse speed, mm/min

T :

Spindle torque, Nm

F RMS :

Root mean square axial force, N

T RMS :

Root mean square stirring torque, Nm

P RMS :

Root mean square power, watt (W)

σ ut :

Ultimate tensile strength, MPa

ε f :

Elongation at fracture point, mm

η joint :

Joint efficiency

A ex :

Expelled area, mm2

A SZ :

Stir zone area, mm2

HAZ:

Heat-affected zone

SZ:

Stir zone

UZ:

Undercut zone

P Mech :

Mechanical power, watt (W)

F traverse :

Traverse force, N

η Plunging :

Plunging efficiency, %

η Welding :

Welding efficiency, %

[AUZ]AS :

Undercut area in advancing side, mm2

[AUZ]RS :

Undercut area in retracting side, mm2

[ASZ]AS :

Stir zone area in advancing side, mm2

[ASZ]RS :

Stir zone area in retracting side, mm2

SIVSZ :

Symmetric index value for stir zone

SIVUZ :

Symmetric index value undercut zone

DWT:

Discrete wavelet transform

CWT:

Continuous wavelet transform

Db:

Daubechies

w :

Wavelet function

W :

Weld quality features

S :

Sensor-based features

References

  1. Eslami, S.; Miranda, J.F.; Mourão, L.; Tavares, P.J.; Moreira, P.M.G.P.: Polyethylene friction stir welding parameter optimization and temperature characterization. Int. J. Adv. Manuf. Technol. 99, 127–136 (2018). https://doi.org/10.1007/s00170-018-2504-x

    Article  Google Scholar 

  2. Vinson, J.R.: T 1332. (1971)

  3. Modarres, M.; Tahmasebipour, M.: Investigation of the effect of ultrasonic micro-welding process parameters on the microstructure components bonding. J. Braz. Soc. Mech. Sci. Eng. 44, 1–14 (2022). https://doi.org/10.1007/s40430-022-03614-8

    Article  Google Scholar 

  4. Galińska, A.: Mechanical joining of fibre reinforced polymer composites to metals—a review. Part i: Bolted joining. Polymers 12, 1–48 (2020). https://doi.org/10.3390/polym12102252

    Article  Google Scholar 

  5. Aghajani Derazkola, H.; Simchi, A.; Lambiase, F.: Friction stir welding of polycarbonate lap joints: relationship between processing parameters and mechanical properties. Polym. Testing 79, 105999 (2019). https://doi.org/10.1016/j.polymertesting.2019.105999

    Article  Google Scholar 

  6. Sharma, A.K.R.; Roy Choudhury, M.; Debnath, K.: Experimental investigation of friction stir welding of PLA. Weld. World. 64, 1011–1021 (2020). https://doi.org/10.1007/s40194-020-00890-7

    Article  Google Scholar 

  7. Shah, F.; Younas, M.; Khan, M.; Khan, A.; Khan, Z.; Khan, N.: Mechanical properties and weld characteristics of friction stir welding of thermoplastics using heat-assisted tool. Weld. World. 67, 309–323 (2023). https://doi.org/10.1007/s40194-022-01385-3

    Article  Google Scholar 

  8. Singh, S.; Singh, G.; Prakash, C.; Kumar, R.: On the mechanical characteristics of friction stir welded dissimilar polymers: statistical analysis of the processing parameters and morphological investigations of the weld joint. J. Braz. Soc. Mech. Sci. Eng. 42, 1–12 (2020). https://doi.org/10.1007/s40430-020-2227-4

    Article  Google Scholar 

  9. Nath, R.K.; Maji, P.; Barma, J.D.: Development of a Self-Heated Friction Stir Welding tool for welding of polypropylene sheets. J. Braz. Soc. Mech. Sci. Eng. 41, 1–13 (2019). https://doi.org/10.1007/s40430-019-2059-2

    Article  Google Scholar 

  10. Sahu, S.K.; Mishra, D.; Pal, K.: A comparative study between weldability of polycarbonate and nylon-6 using different pin geometries in friction stir welding. Proc. Inst. Mech. Eng. Part B J Eng. Manuf. (2021). https://doi.org/10.1177/09544054211040705

    Article  Google Scholar 

  11. Arici, A.; Selale, S.: Effects of tool tilt angle on tensile strength and fracture locations of friction stir welding of polyethylene. Sci. Technol. Weld. Join. 12, 536–539 (2007). https://doi.org/10.1179/174329307X173706

    Article  Google Scholar 

  12. Arif, M.; Kumar, D.; Siddiquee, A.N.: Morphological and mechanical characterization of friction stir welded zones in acrylonitrile butadiene styrene (ABS) polymer. J. Mater. Eng. Perform. (2023). https://doi.org/10.1007/s11665-023-08402-6

    Article  Google Scholar 

  13. Nath, R.K.; Maji, P.; Barma, J.D.: Joining of advance engineering thermoplastic using novel self-heated FSW Tool. Jom. 73, 1774–1785 (2021). https://doi.org/10.1007/s11837-021-04686-y

    Article  Google Scholar 

  14. Kumar, S.; Roy, B.S.: A comparative analysis on friction stir welding of similar and dissimilar polymers: acrylonitrile butadiene styrene and polycarbonate plates. Weld. World. 66, 1141–1153 (2022). https://doi.org/10.1007/s40194-022-01294-5

    Article  Google Scholar 

  15. Mert, S.; Arici, A.: Design of optimal joining for friction stir spot welding of polypropylene sheets. Sci. Technol. Weld. Join. 16, 522–527 (2011). https://doi.org/10.1179/1362171811Y.0000000034

    Article  Google Scholar 

  16. Junior, W.S.; Handge, U.A.; dos Santos, J.F.; Abetz, V.; Amancio-Filho, S.T.: Feasibility study of friction spot welding of dissimilar single-lap joint between poly(methyl methacrylate) and poly(methyl methacrylate)-SiO2 nanocomposite. Mater. Des. 64, 246–250 (2014). https://doi.org/10.1016/j.matdes.2014.07.050

    Article  Google Scholar 

  17. Kumar, R.; Singh, R.; Ahuja, I.P.S.; Hashmi, M.S.J.: Friction-stir-spot welding of 3D printed ABS and PA6 composites: flexural, thermal and morphological investigations. Adv. Mater. Process. Technol. 8, 909–916 (2022). https://doi.org/10.1080/2374068X.2020.1835014

    Article  Google Scholar 

  18. Pattanaik, A.K.; Nayak, L.P.; Bisoyi, R.K.; Pal, K.; Mishra, D.: Monitoring of friction stirred spot weld quality for dissimilar Al6061 to polycarbonate using tool assisted thrust-torque signatures. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. (2023). https://doi.org/10.1177/09544062231173280

    Article  Google Scholar 

  19. Sun, Y.; Sun, Y.; Zhang, Y.; Sun, Y.; Zou, L.; Yang, X.: Study on the thermal-assisted underwater friction stir lap welding for thermoplastic PC. Mater. Lett. 333, 133571 (2023). https://doi.org/10.1016/j.matlet.2022.133571

    Article  Google Scholar 

  20. Derazkola, H.A.; Kashiry Fard, R.; Khodabakhshi, F.: Effects of processing parameters on the characteristics of dissimilar friction-stir-welded joints between AA5058 aluminum alloy and PMMA polymer. Weld. World. 62, 117–130 (2018). https://doi.org/10.1007/s40194-017-0517-y

    Article  Google Scholar 

  21. Goswami, N.; Pal, K.: Comparative assessment on weldability of Al 6061 to polycarbonate for dissimilar sheets placement in friction stir lap welding using sensor signals. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 236, 3474–3496 (2022). https://doi.org/10.1177/09544062211042663

    Article  Google Scholar 

  22. Yusof, F.; Miyashita, Y.; Seo, N.; Mutoh, Y.; Moshwan, R.: Utilising friction spot joining for dissimilar joint between aluminium alloy (A5052) and polyethylene terephthalate. Sci. Technol. Weld. Join. 17, 544–549 (2012). https://doi.org/10.1179/136217112x13408696326530

    Article  Google Scholar 

  23. Ratanathavorn, W.; Melander, A.: Dissimilar joining between aluminium alloy (AA 6111) and thermoplastics using friction stir welding. Sci. Technol. Weld. Join. 20, 222–228 (2015). https://doi.org/10.1179/1362171814Y.0000000276

    Article  Google Scholar 

  24. Shahmiri, H.; Movahedi, M.; Kokabi, A.H.: Friction stir lap joining of aluminium alloy to polypropylene sheets. Sci. Technol. Weld. Join. 22, 120–126 (2017). https://doi.org/10.1080/13621718.2016.1204171

    Article  Google Scholar 

  25. Kumar, G.S.V.S.; Kumar, A.; Rajesh, S.; Chekuri, R.B.R.; Sundaramurthy, V.P.: Experimental and thermal investigation with optimization on friction stir welding of nylon 6A using Taguchi and microstructural analysis. Adv. Mech. Eng. 13, 1–14 (2021). https://doi.org/10.1177/16878140211050737

    Article  Google Scholar 

  26. Bilici, M.K.; Yükler, A.I.; Kurtulmuş, M.: The optimization of welding parameters for friction stir spot welding of high density polyethylene sheets. Mater. Des. 32, 4074–4079 (2011). https://doi.org/10.1016/j.matdes.2011.03.014

    Article  Google Scholar 

  27. Pirizadeh, M.; Azdast, T.; Rash Ahmadi, S.; Mamaghani Shishavan, S.; Bagheri, A.: Friction stir welding of thermoplastics using a newly designed tool. Mater. Des. 54, 342–347 (2014). https://doi.org/10.1016/j.matdes.2013.08.053

    Article  Google Scholar 

  28. Rezaee Hajideh, M.; Farahani, M.; Alavi, S.A.D.; Molla Ramezani, N.: Investigation on the effects of tool geometry on the microstructure and the mechanical properties of dissimilar friction stir welded polyethylene and polypropylene sheets. J. Manuf. Process. 26, 269–279 (2017). https://doi.org/10.1016/j.jmapro.2017.02.018

    Article  Google Scholar 

  29. Sadeghian, N.; Besharati Givi, M.K.: Experimental optimization of the mechanical properties of friction stir welded Acrylonitrile Butadiene Styrene sheets. Mater. Des. 67, 145–153 (2015). https://doi.org/10.1016/j.matdes.2014.11.032

    Article  Google Scholar 

  30. Goswami, N.K.; Nayak, L.P.; Pal, K.: Investigation on tool positioning in friction stir lap welding of AA6061 to polycarbonate sheets using force-torque signals. J. Adhes. Sci. Technol. (2022). https://doi.org/10.1080/01694243.2022.2080963

    Article  Google Scholar 

  31. Mishra, D.; Gupta, A.; Raj, P.; Kumar, A.; Anwer, S.; Pal, S.K.; Chakravarty, D.; Pal, S.; Chakravarty, T.; Pal, A.; Misra, P.; Misra, S.: Real time monitoring and control of friction stir welding process using multiple sensors. CIRP J. Manuf. Sci. Technol. 30, 1–11 (2020). https://doi.org/10.1016/j.cirpj.2020.03.004

    Article  Google Scholar 

  32. Rabi, J.; Balusamy, T.; Raj Jawahar, R.: Analysis of vibration signal responses on pre induced tunnel defects in friction stir welding using wavelet transform and empirical mode decomposition. Defence Technol. 15, 885–896 (2019). https://doi.org/10.1016/j.dt.2019.05.014

    Article  Google Scholar 

  33. Mishra, D.; Shree, S.; Gupta, A.; Priyadarshi, A.; Das, S.M.; Pal, S.K.; Chakravarty, D.; Pal, S.; Chattopadhyay, T.; Pal, A.: Weld defect localization in friction stir welding process. Weld. World. 65, 451–461 (2021). https://doi.org/10.1007/s40194-020-01028-5

    Article  Google Scholar 

  34. Kumari, S.; Jain, R.; Kumar, U.; Yadav, I.; Ranjan, N.; Kumari, K.; Kesharwani, R.K.; Kumar, S.; Pal, S.; Pal, S.K.; Chakravarty, D.: Defect identification in friction stir welding using continuous wavelet transform. J. Intell. Manuf. 30, 483–494 (2019). https://doi.org/10.1007/s10845-016-1259-1

    Article  Google Scholar 

  35. Das, B.; Pal, S.; Bag, S.: Weld defect identification in friction stir welding using power spectral density. IOP Conf. Ser. Mater. Sci. Eng. (2018). https://doi.org/10.1088/1757-899X/346/1/012049

    Article  Google Scholar 

  36. Choi, W.J.; Morrow, J.D.; Pfefferkorn, F.E.; Zinn, M.R.: Welding parameter maps to help select power and energy consumption of friction stir welding. J. Manuf. Process. 33, 35–42 (2018). https://doi.org/10.1016/j.jmapro.2018.04.017

    Article  Google Scholar 

  37. Cui, S.; Chen, Z.W.; Robson, J.D.: A model relating tool torque and its associated power and specific energy to rotation and forward speeds during friction stir welding/processing. Int. J. Mach. Tools Manuf 50, 1023–1030 (2010). https://doi.org/10.1016/j.ijmachtools.2010.09.005

    Article  Google Scholar 

  38. Buffa, G.; Ingarao, G.; Campanella, D.; Di Lorenzo, R.; Micari, F.; Fratini, L.: An insight into the electrical energy demand of friction stir welding processes: the role of process parameters, material and machine tool architecture. Int. J. Adv. Manuf. Technol. 100, 3013–3024 (2019). https://doi.org/10.1007/s00170-018-2896-7

    Article  Google Scholar 

  39. Kumar, U.; Yadav, I.; Kumari, S.; Kumari, K.; Ranjan, N.; Kesharwani, R.K.; Jain, R.; Kumar, S.; Pal, S.; Chakravarty, D.; Pal, S.K.: Defect identification in friction stir welding using discrete wavelet analysis. Adv. Eng. Softw. 85, 43–50 (2015). https://doi.org/10.1016/j.advengsoft.2015.02.001

    Article  Google Scholar 

  40. Bhat, N.N.; Kumari, K.; Dutta, S.; Pal, S.K.; Pal, S.: Friction stir weld classification by applying wavelet analysis and support vector machine on weld surface images. J. Manuf. Process. 20, 274–281 (2015). https://doi.org/10.1016/j.jmapro.2015.07.002

    Article  Google Scholar 

  41. Chen, C.; Kovacevic, R.; Jandgric, D.: Wavelet transform analysis of acoustic emission in monitoring friction stir welding of 6061 aluminum. Int. J. Mach. Tools Manuf 43, 1383–1390 (2003). https://doi.org/10.1016/S0890-6955(03)00130-5

    Article  Google Scholar 

  42. Das, B.; Pal, S.; Bag, S.: A combined wavelet packet and Hilbert-Huang transform for defect detection and modelling of weld strength in friction stir welding process. J. Manuf. Process. 22, 260–268 (2016). https://doi.org/10.1016/j.jmapro.2016.04.002

    Article  Google Scholar 

  43. Roy, R.B.; Ghosh, A.; Bhattacharyya, S.; Mahto, R.P.; Kumari, K.; Pal, S.K.; Pal, S.: Weld defect identification in friction stir welding through optimized wavelet transformation of signals and validation through X-ray micro-CT scan. Int. J. Adv. Manuf. Technol. 99, 623–633 (2018). https://doi.org/10.1007/s00170-018-2519-3

    Article  Google Scholar 

  44. Barik, T.; Pal, K.: Prediction of drilled hole quality in bidirectional woven carbon fiber reinforced plastic using wavelet packets of force–torque signals. J. Reinf. Plast. Compos. 40, 800–826 (2021). https://doi.org/10.1177/07316844211011757

    Article  Google Scholar 

  45. Barik, T.; Pal, K.: Prediction of TiAlN- and TiN-coated carbide tool wear in drilling of bidirectional CFRP laminates using wavelet packets of thrust–torque signatures. J. Braz. Soc. Mech. Sci. Eng. 44, 1–30 (2022). https://doi.org/10.1007/s40430-022-03673-x

    Article  Google Scholar 

  46. Yildiz, M.; Ozturk, F.; Sheikh-ahmad, J.: A Comprehensive review on friction stir welding of high-density polyethylene. Arab. J. Sci. Eng. 48, 11167–11210 (2023). https://doi.org/10.1007/s13369-023-08048-5

    Article  Google Scholar 

  47. Pattanaik, A.K.; Pradhan, S.; Panda, S.N.; Bagal, D.K.; Pal, K.; Patnaik, D.: Effect of process parameters on friction stir spot welding using grey based Taguchi methodology. Mater. Today Proc. 5, 12098–12102 (2018). https://doi.org/10.1016/j.matpr.2018.02.186

    Article  Google Scholar 

  48. Chatterjee, S.; Chatterjee, R.; Pal, S.; Pal, K.; Pal, S.K.: Adaptive chirplet transform for sensitive and accurate monitoring of pulsed gas metal arc welding process. Int. J. Adv. Manuf. Technol. 60, 111–125 (2012). https://doi.org/10.1007/s00170-011-3597-7

    Article  Google Scholar 

  49. Sahu, S.K.; Pal, K.; Das, S.: Parametric study on joint quality in friction stir welding of polycarbonate. Mater. Today Proc. 39, 1275–1280 (2020). https://doi.org/10.1016/j.matpr.2020.04.218

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their sincere thanks and heartfelt appreciation to the "Friction Stir Welding Laboratory" at the Department of Mechanical Engineering, IIT Kharagpur, and the Department of Production Engineering at Veer Surendra Sai University of Technology, Burla, for their invaluable contributions in conducting the welding experiment, as well as for their assistance in post-weld sample preparations and testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Pal.

Ethics declarations

Conflict of interest

This article has no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goswami, N.K., Pal, K., Bisoyi, R.K. et al. Monitoring of Weld Bead Profile in Friction Stir Lap Welding for Polycarbonate Sheets Using Wavelet Packets of Power Signal. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-09057-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-09057-8

Keywords

Navigation