Skip to main content
Log in

Improving the Machining Performance of Polymer Hybrid Composite by Abrasive Water Jet Machining for Precise Machining

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Natural fibre-reinforced hybrid polymer composites have gained significant attention worldwide in mechanical, aerospace, and automotive applications. Advanced machining techniques, such as abrasive water jet machining, have emerged as a solution to various challenges in this field, offering benefits such as the ability to shape complex geometries, achieve superior performance, improve surface characteristics, and attain high levels of accuracy. The research proposes a new approach for producing biodegradable hybrid composites composed of polylactic acid, bamboo particles, and montmorillonite clay using an innovative solvent-free stir-casting technique optimised for maximum efficiency. To systematically analyse the surface roughness, kerf angle, and material removal rate, a Box–Behnken design of experiments was employed, with the traverse rate, abrasive feed rate, and stand-off distance considered design variables. Analysis of variance was used to determine the significance of the differences between means of variables, while response surface methodology was utilised to establish the explicit relationship between the design variables and the response of the composite machining. The particle swarm optimisation algorithm was also employed to determine the optimal values of the design parameters for machining composites. The results showed that the traverse rate was the most influential factor, followed by the abrasive feed rate. In contrast, the stand-off distance had a relatively lower level of influence. The optimal process parameters were identified, resulting in a minimum surface roughness of 5.56 μm, a kerf taper of 0.0044 radians, and a material removal rate of 1175 g/min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Salit, M.S.; Jawaid, M.; Yusoff, N.B.; Hoque, M.E. (eds.): Manufacturing of Natural Fibre Reinforced Polymer Composites. Springer, Cham (2015)

    Google Scholar 

  2. Alaaeddin, M.H.; Sapuan, S.M.; Zuhri, M.Y.M.; Zainudin, E.S.; Oqla, A.L.-F.M.: Physical and mechanical properties of polyvinylidene fluoride—short sugar palm fiber nanocomposites. J. Clean. Prod. 235, 473–482 (2019). https://doi.org/10.1016/j.jclepro.2019.06.341

    Article  Google Scholar 

  3. Lotfi, A.; Li, H.; Dao, D.V.; Prusty, G.: Natural fiber–reinforced composites: A review on material, manufacturing, and machinability. J. Thermoplast. Compos. Mater. 34, 238–284 (2021). https://doi.org/10.1177/0892705719844546

    Article  Google Scholar 

  4. Nirmal Kumar, K.; Dinesh Babu, P.; Surakasi, R.; Kumar, P.M.; Ashokkumar, P.; Khan, R.; Alfozan, A.; Gebreyohannes, D.T.: Mechanical and thermal properties of bamboo fiber-reinforced PLA polymer composites: a critical study. Int. J. Polym. Sci. 2022, 1–15 (2022). https://doi.org/10.1155/2022/1332157

    Article  Google Scholar 

  5. Rajmohan, T.; Vinayagamoorthy, R.; Mohan, K.: Review on effect machining parameters on performance of natural fibre–reinforced composites (NFRCs). J. Thermoplast. Compos. Mater. 32, 1282–1302 (2019). https://doi.org/10.1177/0892705718796541

    Article  Google Scholar 

  6. Zajac, J.; Hutyrová, Z.; Orlovský, I.: Investigation of surface roughness after turning of one kind of the bio-material with thermoplastic matrix and natural fibers. In: Advanced Materials Research (pp. 275–279). Trans Tech Publications Ltd (2014)

  7. Abilash, N.; Sivapragash, M.: Optimising the delamination failure in bamboo fiber reinforced polyester composite. J. King Saud Univ. Eng. Sci. 28, 92–102 (2016). https://doi.org/10.1016/j.jksues.2013.09.004

    Article  Google Scholar 

  8. Díaz-Álvarez, A.; Díaz-Álvarez, J.; Santiuste, C.; Miguélez, M.H.: Experimental and numerical analysis of the influence of drill point angle when drilling biocomposites. Compos. Struct. 209, 700–709 (2019). https://doi.org/10.1016/j.compstruct.2018.11.018

    Article  Google Scholar 

  9. Rezghi Maleki, H.; Hamedi, M.; Kubouchi, M.; Arao, Y.: Experimental study on drilling of jute fiber reinforced polymer composites. J. Compos. Mater. 53, 283–295 (2019). https://doi.org/10.1177/0021998318782376

    Article  Google Scholar 

  10. Jayabal, S.; Velumani, S.; Navaneethakrishnan, P.; Palanikumar, K.: Mechanical and machinability behaviors of woven coir fiber-reinforced polyester composite. Fibers Polym. 14, 1505–1514 (2013). https://doi.org/10.1007/s12221-013-1505-5

    Article  Google Scholar 

  11. Masoud, F.; Sapuan, S.M.; Mohd Ariffin, M.K.A.; Nukman, Y.; Bayraktar, E.: Cutting processes of natural fiber-reinforced polymer composites. Polymers 12, 1332 (2020)

    Article  Google Scholar 

  12. Debnath, K.; Singh, I.: Primary and Secondary Manufacturing of Polymer Matrix Composites. CRC Press, London (2017)

    Book  Google Scholar 

  13. Hejjaji, A.; Singh, D.; Kubher, S.; Kalyanasundaram, D.; Gururaja, S.: Machining damage in FRPs: laser versus conventional drilling. Compos. Part A Appl. Sci. Manuf. 82, 42–52 (2016). https://doi.org/10.1016/j.compositesa.2015.11.036

    Article  Google Scholar 

  14. Raj, S.S.R.; Dhas, J.E.R.; Jesuthanam, C.P.: Challenges on machining characteristics of natural fiber-reinforced composites—a review. J. Reinf. Plast. Compos. 40, 41–69 (2021). https://doi.org/10.1177/0731684420940773

    Article  Google Scholar 

  15. Thakur, R.K.; Singh, K.K.: Abrasive waterjet machining of fiber-reinforced composites: a state-of-the-art review. J. Braz. Soc. Mech. Sci. Eng. 42, 381 (2020). https://doi.org/10.1007/s40430-020-02463-7

    Article  Google Scholar 

  16. Kalirasu, S.; Rajini, N.; Bharath Sagar, N.; Mahesh Kumar, D.; Gomathi Sankar, A.: Studies of abrasive water jet machining (AWJM) parameters on banana/polyester composites using robust design concept. Appl. Mech. Mater. 787, 573–577 (2015). https://doi.org/10.4028/www.scientific.net/amm.787.573

    Article  Google Scholar 

  17. Jani, S.P.; Kumar, A.S.; Khan, M.A.; Kumar, M.U.: Machinablity of hybrid natural fiber composite with and without filler as reinforcement. Mater. Manuf. Processes 31, 1393–1399 (2016). https://doi.org/10.1080/10426914.2015.1117633

    Article  Google Scholar 

  18. Ramesha, N.; Siddaramaiah, A.S.: Abrasive water jet machining and mechanical behavior of banyan tree saw dust powder loaded polypropylene green composites. Polym. Compos. 37, 1754–1764 (2016). https://doi.org/10.1002/pc.23348

    Article  Google Scholar 

  19. Dhakal, H.N.; Ismail, S.O.; Ojo, S.O.; Paggi, M.; Smith, J.R.: Abrasive water jet drilling of advanced sustainable bio-fibre-reinforced polymer/hybrid composites: a comprehensive analysis of machining-induced damage responses. Int. J. Adv. Manuf. Technol. 99, 2833–2847 (2018). https://doi.org/10.1007/s00170-018-2670-x

    Article  Google Scholar 

  20. Muller, M.; D’Amato, R.; Rudawska, A.: Machining of polymeric composites by means of abrasive waterjet technology. In: Engineering for Rural Development, pp. 121–127. Latvia University of Agriculture (2017)

  21. Müller, M.; Valášek, P.; Linda, M.; Kolář, V.: Research on water jet cutting of composites based on epoxy/microparticles from coconut shell. In: MATEC Web of Conferences. EDP Sciences (2018)

  22. Jagadish, G.K.; Rajakumaran, M.: Evaluation of machining performance of pineapple filler based reinforced polymer composites using abrasive water jet machining process. In: IOP Conference Series: Materials Science and Engineering. Institute of Physics Publishing (2018)

  23. Rao, S.; Sethi, A.; Das, A.K.; Mandal, N.; Kiran, P.; Ghosh, R.; Dixit, A.R.; Mandal, A.: Fiber laser cutting of CFRP composites and process optimisation through response surface methodology. Mater. Manuf. Processes 32, 1612–1621 (2017). https://doi.org/10.1080/10426914.2017.1279296

    Article  Google Scholar 

  24. Jagadish, B.S.; Ray, A.: Prediction and optimisation of process parameters of green composites in AWJM process using response surface methodology. Int. J. Adv. Manuf. Technol. 87, 1359–1370 (2016). https://doi.org/10.1007/s00170-015-8281-x

    Article  Google Scholar 

  25. Shetty, R.; Hegde, A.: Taguchi based fuzzy logic model for optimisation and prediction of surface roughness during AWJM of DRCUFP composites. Manuf. Rev. (Les Ulis) (2022). https://doi.org/10.1051/mfreview/2021027

    Article  Google Scholar 

  26. Nair, A.; Kumanan, S.: Multi-performance optimisation of abrasive water jet machining of Inconel 617 using WPCA. Mater. Manuf. Processes 32, 693–699 (2017). https://doi.org/10.1080/10426914.2016.1244844

    Article  Google Scholar 

  27. Li, C.; Xiao, Q.; Tang, Y.; Li, L.: A method integrating Taguchi, RSM and MOPSO to CNC machining parameters optimisation for energy saving. J. Clean. Prod. 135, 263–275 (2016). https://doi.org/10.1016/j.jclepro.2016.06.097

    Article  Google Scholar 

  28. Jagadish, P.G.C.M.; Sibalija, T.V.; Mumtaz, J.; Li, Z.: Abrasive water jet machining for a high-quality green composite: the soft computing strategy for modeling and optimisation. J. Braz. Soc. Mech. Sci. Eng. (2022). https://doi.org/10.1007/s40430-022-03378-1

    Article  Google Scholar 

  29. Chenrayan, V.; Manivannan, C.; Shahapurkar, K.; Zewdu, G.A.; Maniselvam, N.; Alarifi, I.M.; Alblalaihid, K.; Tirth, V.; Algahtani, A.: An experimental and empirical assessment of machining damage of hybrid glass-carbon FRP composite during abrasive water jet machining. J. Market. Res. 19, 1148–1161 (2022). https://doi.org/10.1016/j.jmrt.2022.05.042

    Article  Google Scholar 

  30. Perec, A.: Desirability function analysis (DFA) in multiple responses optimisation of abrasive water jet cutting process. Rep. Mech. Eng. 3, 11–19 (2022). https://doi.org/10.31181/rme200103011p

    Article  Google Scholar 

  31. Ganesan, D.; Salunkhe, S.; Panghal, D.; Murali, A.P.; Mahalingam, S.; Tarigonda, H.; Gawade, S.R.; Hussein, H.M.A.-M.: Optimisation of abrasive water jet machining process parameters on onyx composite followed by additive manufacturing. Processes 11, 2263 (2023). https://doi.org/10.3390/pr11082263

    Article  Google Scholar 

  32. Kumar, K.N.; Babu, P.D.: Investigation on polymer hybrid composite through CO2 laser machining for precise machining conditions. Int. J. Precis. Eng. Manuf. (2024). https://doi.org/10.1007/s12541-023-00942-0

    Article  Google Scholar 

  33. Coello Coello, C.A.; Pulido, G.T.; Lechuga, M.S.: Handling multiple objectives with particle swarm optimisation. IEEE Trans. Evol. Comput. 8, 256–279 (2004). https://doi.org/10.1109/TEVC.2004.826067

    Article  Google Scholar 

  34. Kennedy, J.; Eberhart, R.: Particle swarm optimisation. In: Proceedings of ICNN’95-International Conference on Neural Networks, pp. 1942–1948. IEEE

  35. Ray, T.; Liew, K.M.: A swarm metaphor for multiobjective design optimisation. Eng. Optim. 34, 141–153 (2002). https://doi.org/10.1080/03052150210915

    Article  Google Scholar 

  36. Nirmal Kumar, K.; Dinesh Babu, P.: Experimental study of mechanical, morphological and thermal performance of bamboo-reinforced polylactic acid-based montmorillonite clay hybrid composite. Ind. Crops Prod. (2024). https://doi.org/10.1016/j.indcrop.2023.117950

    Article  Google Scholar 

  37. Rajamani, D.; Balasubramanian, E.; Dilli Babu, G.; Ananthakumar, K.: Experimental investigations on high precision abrasive waterjet cutting of natural fibre reinforced nano clay filled green composites. J. Ind. Text. 51, 3786S-3810S (2022). https://doi.org/10.1177/1528083720942962

    Article  Google Scholar 

  38. Rezaee Jordehi, A.; Jasni, J.: Particle swarm optimisation for discrete optimisation problems: a review. Artif. Intell. Rev. 43, 243–258 (2015). https://doi.org/10.1007/s10462-012-9373-8

    Article  Google Scholar 

  39. Jagadeesh, B.; Dinesh Babu, P.; Nalla Mohamed, M.; Marimuthu, P.: Experimental investigation and optimisation of abrasive water jet cutting parameters for the improvement of cut quality in carbon fiber reinforced plastic laminates. J. Ind. Text. 48, 178–200 (2018). https://doi.org/10.1177/1528083717725911

    Article  Google Scholar 

  40. Raj Mohan, R.; Venkatraman, R.; Raghuraman, S.: Experimental analysis on density, micro-hardness, surface roughness and processing time of acrylonitrile butadiene styrene (ABS) through fused deposition modeling (FDM) using box behnken design (BBD). Mater. Today Commun. (2021). https://doi.org/10.1016/j.mtcomm.2021.102353

    Article  Google Scholar 

  41. Arun, A.; Rajkumar, K.; Vishal, K.: Process parameters for optimisation in abrasive water jet machining (AWJM) of silicon-filled epoxy glass fibre polymer composites. J. Inorg. Organomet. Polym. Mater. (2023). https://doi.org/10.1007/s10904-023-02593-0

    Article  Google Scholar 

  42. Rao, V.D.P.; Mrudula, M.; Geethika, V.N.: Multiobjective optimization of parameters in abrasive water jet machining of carbon-glass fibre-reinforced hybrid composites. J. Inst. Eng. (India) Ser. D. 100, 55–66 (2019). https://doi.org/10.1007/s40033-019-00181-6

    Article  Google Scholar 

  43. Jesthi, D.K.; Nayak, R.K.: Sensitivity analysis of abrasive air-jet machining parameters on machinability of carbon and glass fiber reinforced hybrid composites. Mater. Today Commun. (2020). https://doi.org/10.1016/j.mtcomm.2020.101624

    Article  Google Scholar 

  44. Anand, G.; Perumal, S.V.; Yuvaraj, N.; Palanikumar, K.: Influence of abrasive water jet machining parameters on hybrid polymer composite. J. Inst. Eng. (India) Ser. C. 102, 713–722 (2021). https://doi.org/10.1007/s40032-021-00672-0

    Article  Google Scholar 

  45. Gubencu, D.-V.; Opriș, C.; Han, A.-A.: Analysis of kerf quality characteristics of kevlar fiber-reinforced polymers cut by abrasive water jet. Materials 16, 2182 (2023). https://doi.org/10.3390/ma16062182

    Article  Google Scholar 

  46. Thakur, R.K.; Singh, K.K.: Experimental investigation and optimisation of abrasive water jet machining parameter on multi-walled carbon nanotube doped epoxy/carbon laminate. Measurement (Lond). (2020). https://doi.org/10.1016/j.measurement.2020.108093

    Article  Google Scholar 

  47. Pradhan, S.; Tripathy, S.S.; Dhupal, D.: Machining of aluminium nitride ceramic using developed hot abrasive jet machining: an experimental and simulation approach. Adv. Mater. Process. Technol. 8, 596–610 (2022). https://doi.org/10.1080/2374068X.2021.1945275

    Article  Google Scholar 

  48. Wang, D.; Tan, D.; Liu, L.: Particle swarm optimisation algorithm: an overview. Soft. Comput. 22, 387–408 (2018). https://doi.org/10.1007/s00500-016-2474-6

    Article  Google Scholar 

  49. Piotrowski, A.P.; Napiorkowski, J.J.; Piotrowska, A.E.: Population size in particle swarm optimization. Swarm Evol. Comput. (2020). https://doi.org/10.1016/j.swevo.2020.100718

    Article  Google Scholar 

  50. Radovanovic, M.: Multiobjective optimisation of abrasive water jet cutting using MogA. In: Procedia Manufacturing, pp. 781–787. Elsevier BV (2020)

  51. Tripathi, P.K.; Bandyopadhyay, S.; Pal, S.K.: Multiobjective particle swarm optimisation with time variant inertia and acceleration coefficients. Inf Sci (N Y). 177, 5033–5049 (2007). https://doi.org/10.1016/j.ins.2007.06.018

    Article  Google Scholar 

  52. Sierra, M.R.; Coello Coello, C.A.: Improving PSO-based multiobjective optimisation using crowding, mutation and ∈-dominance. Presented at the (2005)

  53. Arunkumar, K.; Murugarajan, A.: Evaluation of mechanical properties and surface roughness of cotton–viscose hybrid composite. Polym. Polym. Compos. 29, 188–197 (2021). https://doi.org/10.1177/0967391120909052

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Dinesh Babu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data Availability Statement

The authors confirm that the data supporting the findings of this study are available within the article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, K.N., Babu, P.D. Improving the Machining Performance of Polymer Hybrid Composite by Abrasive Water Jet Machining for Precise Machining. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-09033-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-09033-2

Keywords

Navigation