Skip to main content
Log in

Mechanical and Microstructural Properties of Polypropylene Fiber-Reinforced Concretes Exposed to Low-Temperature Curing

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Many major engineering projects have been building in cold regions, and concretes would be inevitably cured under low-temperature conditions. In this study, the influences of curing media (air, water, and 5% NaCl solution), curing temperatures (− 6, − 2, 2, and 6 ℃), and dosages of polypropylene fibers (0, 1.0, 2.0, and 4.0%) on concrete performances were investigated. Results are illustrated that the positive-curing temperature and curing age have beneficial effects on the mechanical properties of concretes, the compressive strength of concretes increases with the curing temperature raised. Negative-curing temperature inhibits hydration reaction, reduction of liquid water and frost heave seriously deteriorate the mechanical properties of concretes cured in the water and air. Besides, the compressive strengths of PPFRCs first increase and then decrease with the polypropylene fiber dosages raised, and the optimal polypropylene fiber dosage for PPFRCs to resist external loads is 2.0% mass fraction (PP2). Additionally, the types of hydration products are not changed with the curing conditions, and the main characteristic peaks of hydration products are basically the same. The deterioration of concrete samples cured in 5% NaCl solution is the most serious, following by the air and water. Furthermore, adding a reasonable dosage of polypropylene fibers into concretes could form effective fiber-matrix combination and three-dimensional network structures, and a remarkable effect on the crack propagations and frost-resistance of PPFRCs could be exhibited. However, high dosages of polypropylene fibers might cause agglomeration and increase the harmful pores in concretes, which is not contributed to the strength enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Li, D.S.; Zheng, H.; Gu, K.; Lang, L.; Shi, S.; Chen, B.: Autogenous healing mechanism of cement-based materials. Front. Struct. Civ. Eng. 17(6), 948–963 (2023)

    Article  Google Scholar 

  2. Lu, J.G.; Liu, J.N.; Yang, H.H.; Wan, X.S.; Gao, J.J.; Zhang, J.C.; Li, P.C.: Experimental investigation on the mechanical properties and pore structure deterioration of fiber-reinforced concrete in different freeze-thaw media. Constr. Build. Mater. 350, 128887 (2022)

    Article  Google Scholar 

  3. Lu, J.G.; Liu, J.N.; Fan, X.Y.; Wan, X.S.; Gao, J.J.; Zhang, J.C.; Li, P.C.: Study on the mechanical properties and microstructure of fiber-reinforced concrete subjected to sulfate erosion. Arab. J. Sci. Eng. 47(10), 13639–13653 (2022)

    Article  Google Scholar 

  4. Wang, C.; Zhang, M.Y.; Wang, Q.C.; Zhang, R.L.; Pei, W.S.; Zhou, Y.Q.: Influence of nano-silica on the performances of concrete under the negative-temperature curing condition. Cold Reg. Sci. Tech. 191, 103357 (2021)

    Article  Google Scholar 

  5. Mokhtar, M.M.; Morsy, M.; Taha, N.A.; Ahmed, E.M.: Investigating the mechanical performance of nano additives reinforced high-performance concrete. Constr. Build. Mater. 320, 125537 (2022)

    Article  Google Scholar 

  6. Mehrabi, P.; Shariati, M.; Kabirifar, K.; Jarrah, M.; Rasekh, H.; Trung, N.T.; Shariati, A.; Jahandari, S.: Effect of pumice powder and nano-clay on the strength and permeability of fiber-reinforced pervious concrete incorporating recycled concrete aggregate. Constr. Build. Mater. 287, 122652 (2021)

    Article  Google Scholar 

  7. Wu, H.S.; Shen, A.Q.; Ren, G.P.; Ma, Q.; Wang, Z.; Cheng, Q.Q.; Li, Y.: Dynamic mechanical properties of fiber-reinforced concrete: a review. Constr. Build. Mater. 366, 130145 (2023)

    Article  Google Scholar 

  8. Ren, G.S.; Yao, B.; Ren, M.; Gao, X.J.: Utilization of natural sisal fibers to manufacture eco-friendly ultra-high performance concrete with low autogenous shrinkage. J. Clean. Prod. 332, 130105 (2022)

    Article  Google Scholar 

  9. Sofuoğlu, M.A.; Çakır, F.H.; Çelikten, S.: Influence of steel fiber addition on the vibrational characteristic of high strength cementitious composites. Arab. J. Sci. Eng. 46(5), 4677–4685 (2020)

    Article  Google Scholar 

  10. Çelikten, S.: Properties of recycled steel fibre reinforced expanded perlite based geopolymer mortars. Adv. Concr. Constr. 13(1), 25–34 (2022)

    MathSciNet  Google Scholar 

  11. Santhosh, K.G.; Subhani, S.M.; Bahurudeen, A.: Recycling of palm oil fuel ash and rice husk ash in the cleaner production of concrete. J. Clean. Prod. 354, 131736 (2022)

    Article  Google Scholar 

  12. Matos, A.M.; Sousa-Coutinho, J.: Municipal solid waste incineration bottom ash recycling in concrete: preliminary approach with Oporto wastes. Constr. Build. Mater. 323, 136548 (2022)

    Google Scholar 

  13. Çelikten, S.; Erdogan, G.: Effects of perlite/fly ash ratio and the curing conditions on the mechanical and microstructural properties of geopolymers subjected to elevated temperatures. Ceram. Int. 48(19), 27870–27877 (2022)

    Article  Google Scholar 

  14. Çelikten, S.: Mechanical and microstructural properties of waste andesite dust-based geopolymer mortars. Adv. Powder Technol. 32(1), 1–9 (2021)

    Article  Google Scholar 

  15. Zhang, M.Y.; Lai, Y.M.; Wu, Q.H.; Yu, Q.H.; Zhao, T.; Pei, W.S.; Zhang, J.M.: A full-scale field experiment to evaluate the cooling performance of a novel composite embankment in permafrost regions. Int. J. Heat Mass Tran. 95, 1047–1056 (2016)

    Article  Google Scholar 

  16. Pei, W.S.; Zhang, M.Y.; Yan, Z.R.; Lai, Y.M.; Lu, J.G.; Dai, Y.J.: Thermal control performance of the embankment with L-shaped thermosyphons and insulations along the Gonghe-Yushu Highway. Cold Reg. Sci. Tech. 194, 103428 (2022)

    Article  Google Scholar 

  17. Zhang, M.Y.; Lu, J.G.; Pei, W.S.; Lai, Y.M.; Yan, Z.R.; Wan, X.S.: Laboratory study on the frost-proof performance of a novel embankment dam in seasonally frozen regions. J. Hydrol. 602, 126769 (2021)

    Article  Google Scholar 

  18. Lu, J.G.; Zhang, M.Y.; Pei, W.S.: Hydro-thermal behaviors of the ground under different surfaces in the Qinghai-Tibet Plateau. Cold Reg. Sci. Tech. 161, 99–106 (2019)

    Article  Google Scholar 

  19. Yin, S.; Tuladhar, R.; Shi, F.; Combe, M.; Collister, T.; Sivakugan, N.: Use of macro plastic fibres in concrete: a review. Constr. Build. Mater. 93, 180–188 (2015)

    Article  Google Scholar 

  20. Liu, X.Z.; Xu, H.; Li, B.; Zhang, C.; Zhang, Y.; Zhao, C.H.; Li, K.H.: Investigation of the mechanical properties of iron tailings concrete subjected to dry-wet cycle and negative temperature. Materials 16(13), 4602 (2023)

    Article  Google Scholar 

  21. Zhang, M.Y.; Lu, J.G.; Lai, Y.M.; Zhang, X.Y.: Variation of the thermal conductivity of a silty clay during a freezing-thawing process. Int. J. Heat Mass Transf. 124, 1059–1067 (2018)

    Article  Google Scholar 

  22. Lu, J.G.; Zhang, M.Y.; Zhang, X.Y.; Pei, W.S.; Bi, J.: Experimental study on the freezing-thawing deformation of a silty clay. Cold Reg. Sci. Tech. 151, 19–27 (2018)

    Article  Google Scholar 

  23. Lu, J.G.; Wang, Y.D.; Pei, W.S.; Wan, X.S.; Tan, L.L.; Deng, F.: Heat flow characteristics and thermal resistance model for soil-rock mixtures during freezing-thawing processes: damping properties. Geoderma 439, 116662 (2023)

    Article  Google Scholar 

  24. Zhang, R.L.; Hao, Z.F.; Ma, L.; Guo, H.Z.; Xiong, Z.Y.; Xu, L.: Research on concrete strength growth and micromechanism under negative temperature curing based on equal strength theory. J. Mater. Civ. Eng. 33(10), 04021265 (2021)

    Article  Google Scholar 

  25. Li, H.B.; Jiang, S.H.; Chen, X.; Ge, Y.; Dong, S.H.: Hydration investigation of negative temperature concrete at early age based on low-field nuclear magnetic resonance. Cold Reg. Sci. Tech. 194, 103449 (2022)

    Article  Google Scholar 

  26. Aydin, S.: Effects of fiber strength on fracture characteristics of normal and high strength concrete. Period. Polytech. Civ. Eng. 57(2), 191–200 (2020)

    Article  Google Scholar 

  27. John, V.J.; Dharmar, B.: Effect of steel macro fibers on engineering properties of copperslag-concrete. Struct. Concr. 21(2), 689–702 (2020)

    Article  Google Scholar 

  28. Jiang, C.H.; Fan, K.; Wu, F.; Chen, D.: Experimental study on the mechanical properties and microstructure of chopped basalt fibre reinforced concrete. Mater. Des. 58, 187–193 (2014)

    Article  Google Scholar 

  29. Cui, K.; Xu, L.H.; Li, X.F.; Hu, X.; Huang, L.; Deng, F.Q.; Chi, Y.: Fatigue life analysis of polypropylene fiber reinforced concrete under axial constant-amplitude cyclic compression. J. Clean. Prod. 319, 128610 (2021)

    Article  Google Scholar 

  30. Pliya, P.; Beaucour, A.L.; Noumowe, A.: Contribution of cocktail of polypropylene and steel fibres in improving the behaviour of high strength concrete subjected to high temperature. Constr. Build. Mater. 25(4), 1926–1934 (2011)

    Article  Google Scholar 

  31. Karahan, O.; Atis, C.D.: The durability properties of polypropylene fiber reinforced fly ash concrete. Mater. Des. 32, 1044–1049 (2011)

    Article  Google Scholar 

  32. Nam, J.; Kim, G.; Lee, B.; Hasegawa, R.; Hama, Y.: Frost resistance of polyvinyl alcohol fiber and polypropylene fiber reinforced cementitious composites under freeze thaw cycling. Compos. Part B Eng. 90, 241–250 (2016)

    Article  Google Scholar 

  33. He, B.; Zhu, X.P.; Ren, Q.; Zheng, Z.W.: Effects of fibers on flexural strength of ultra-high-performance concrete subjected to cryogenic attack. Constr. Build. Mater. 265, 120323 (2020)

    Article  Google Scholar 

  34. Arshad, S.; Sharif, M.B.; Irfan-ul-Hassan, M.; Khan, M.; Zhang, J.L.: Efciency of supplementary cementitious materials and natural fiber on mechanical performance of concrete. Arab. J. Sci. Eng. 45(10), 8577–8589 (2020)

    Article  Google Scholar 

  35. Zhang, P.; Li, Q.F.: Effect of polypropylene fiber on durability of concrete composite containing fly ash and silica fume. Compos. Part B Eng. 45, 1587–1594 (2013)

    Article  Google Scholar 

  36. Lu, J.G.; Liu, J.N.; Yang, H.H.; Gao, J.J.; Wan, X.S.; Zhang, J.C.: Influence of curing temperatures on the performances of fiber-reinforced concrete. Constr. Build. Mater. 339, 127640 (2022)

    Article  Google Scholar 

  37. Eidan, J.; Rasoolan, I.; Rezaeian, A.; Poorveis, D.: Residual mechanical properties of polypropylene fiber-reinforced concrete after heating. Constr. Build. Mater. 198, 195–206 (2019)

    Article  Google Scholar 

  38. Gokhan, G.; Kurklu, G.: The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures. Compos. Part B Eng. 58, 371–377 (2014)

    Article  Google Scholar 

  39. Zheng, X.; Wang, Y.; Zhang, S.; Xu, F.; Zhu, X.; Jiang, X.; Zhou, L.; Shen, Y.; Chen, Q.; Yan, Z.; Zhao, W.: Research progress of the thermophysical and mechanical properties of concrete subjected to freeze-thaw cycles. Constr. Build. Mater. 330, 127254 (2022)

    Article  Google Scholar 

  40. Lu, J.G.; Pei, W.S.; Zhang, M.Y.; Wan, X.S.; Zhang, J.C.; Wang, Y.D.: Coupled effect of the freeze-thaw cycles and salt erosion on the performance of concretes modified with nanoparticles. Cold Reg. Sci. Tech. 217, 104046 (2024)

    Article  Google Scholar 

  41. An, M.Z.; Wang, Y.; Yu, Z.R.: Damage mechanisms of ultra-high-performance concrete under freeze-thaw cycling in salt solution considering the effect of rehydration. Constr. Build. Mater. 198, 546–552 (2019)

    Article  Google Scholar 

  42. Wang, Y.; Zhang, S.H.; Niu, D.T.; Fu, Q.: Quantitative evaluation of the characteristics of air voids and their relationship with the permeability and salt freeze-thaw resistance of hybrid steel-polypropylene fiber-reinforced concrete composites. Cem. Concr. Compos. 125, 104292 (2022)

    Article  Google Scholar 

  43. GB/T 50081-2019: Standard for Test Methods of Concrete Physical and Mechanical Properties. China Architecture and Building Press; Beijing, China (2019)

Download references

Funding

This research was supported by the National Natural Science Foundation of China (42101136), the China Postdoctoral Science Foundation (2021M692697), and the State Key Laboratory of Frozen Soil Engineering (SKLFSE202007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Tan, H., Lu, J. et al. Mechanical and Microstructural Properties of Polypropylene Fiber-Reinforced Concretes Exposed to Low-Temperature Curing. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-08984-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-08984-w

Keywords

Navigation