Skip to main content
Log in

Influence of Steel Fiber Addition on the Vibrational Characteristic of High Strength Cementitious Composites

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Structural materials and their properties in different applications with next-generation composite production techniques are quite promising areas. In this study, new composite blocks were produced with the addition of industrial and recycled steel fibers to high strength cementitious composites (HSCCs). The vibrational damping capabilities of the blocks produced in standard dimensions (16 cm × 4 cm × 4 cm) were tested by using the modal analysis method. In many different applications, structural materials are expected to absorb vibrations such as earthquakes or artificial vibrations from machine systems operating in industrial areas. In this study, the vibration damping capability of HSCCs was investigated and improved by adding steel fiber to HSCCs. The experimental study shows that adding steel fibers improves the bending stress by up to 127% and damping ratio over 200%. The fiber size and distribution play a significant role in this improvement. This effect was also achieved to a certain extent in the samples produced using recycled steel fibers obtained from waste tires. In this way, the vibration damping ability of the HSCCs is increased with an environmentally friendly approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fu, X.; Chung, D.D.L.: Vibration damping admixtures for cement. Cem. Concr. Res. 26, 69–75 (1996). https://doi.org/10.1016/0008-8846(95)00177-8

    Article  Google Scholar 

  2. Mohammadhosseini, H.; Alrshoudi, F.; Tahir, M.M.; Alyousef, R.; Alghamdi, H.; Alharbi, Y.R.; Alsaif, A.: Durability and thermal properties of prepacked aggregate concrete reinforced with waste polypropylene fibers. J. Build. Eng. 32, 101723 (2020). https://doi.org/10.1016/j.jobe.2020.101723

    Article  Google Scholar 

  3. Toghroli, A.; Mehrabi, P.; Shariati, M.; Trung, N.T.; Jahandari, S.; Rasekh, H.: Evaluating the use of recycled concrete aggregate and pozzolanic additives in fiber-reinforced pervious concrete with industrial and recycled fibers. Constr. Build. Mater. 252, 118997 (2020). https://doi.org/10.1016/j.conbuildmat.2020.118997

    Article  Google Scholar 

  4. Ozyurt, N.; Mason, T.O.; Shah, S.P.: Correlation of fiber dispersion, rheology and mechanical performance of FRCs. Cem. Concr. Compos. 29, 70–79 (2007). https://doi.org/10.1016/j.cemconcomp.2006.08.006

    Article  Google Scholar 

  5. Kim, J.-K.; Kim, J.-S.; Ha, G.J.; Kim, Y.Y.: Tensile and fiber dispersion performance of ECC (engineered cementitious composites) produced with ground granulated blast furnace slag. Cem. Concr. Res. 37, 1096–1105 (2007). https://doi.org/10.1016/j.cemconres.2007.04.006

    Article  Google Scholar 

  6. Kim, D.J.; Park, S.H.; Ryu, G.S.; Koh, K.T.: Comparative flexural behavior of hybrid ultra high performance fiber reinforced concrete with different macro fibers. Constr. Build. Mater. 25, 4144–4155 (2011). https://doi.org/10.1016/j.conbuildmat.2011.04.051

    Article  Google Scholar 

  7. Cao, Y.; Fan, Q.; Mahmoudi Azar, S.; Alyousef, R.; Yousif, S.T.; Wakil, K.; Jermsittiparsert, K.; Si Ho, L.; Alabduljabbar, H.; Alaskar, A.: Computational parameter identification of strongest influence on the shear resistance of reinforced concrete beams by fiber reinforcement polymer. Structures 27, 118–127 (2020). https://doi.org/10.1016/j.istruc.2020.05.031

    Article  Google Scholar 

  8. Chung, D.D.L.: Materials for vibration damping. J. Mater. Sci. 36, 5733–5737 (2001)

    Article  Google Scholar 

  9. Ruan, Y.; Zhou, D.; Sun, S.; Wu, X.; Yu, X.; Hou, J.; Dong, X.; Han, B.: Self-damping cementitious composites with multilayer graphene. Mater. Res. Express 4, 075605 (2017). https://doi.org/10.1088/2053-1591/aa78e4

    Article  Google Scholar 

  10. Liew, K.M.; Kai, M.F.; Zhang, L.W.: Mechanical and damping properties of CNT-reinforced cementitious composites. Compos. Struct. 160, 81–88 (2017). https://doi.org/10.1016/j.compstruct.2016.10.043

    Article  Google Scholar 

  11. Li, W.-W.; Ji, W.-M.; Liu, Y.; Xing, F.; Liu, Y.-K.: Damping property of a cement-based material containing carbon nanotube. J. Nanomater. 2015, 1–7 (2015). https://doi.org/10.1155/2015/371404

    Article  Google Scholar 

  12. Luo, J.; Duan, Z.; Xian, G.; Li, Q.; Zhao, T.: Damping performances of carbon nanotube reinforced cement composite. Mech. Adv. Mater. Struct. 22, 224–232 (2015). https://doi.org/10.1080/15376494.2012.736052

    Article  Google Scholar 

  13. Wong, W.G.; Fang, P.; Pan, J.K.: Polymer effects on the vibration damping behavior of cement. J. Mater. Civ. Eng. 15, 554–556 (2003). https://doi.org/10.1061/(ASCE)0899-1561(2003)15:6(554)

    Article  Google Scholar 

  14. Ahn, S.; Jeon, E.-B.; Koh, H.-I.; Kim, H.-S.; Park, J.: Identification of stiffness distribution of fatigue loaded polymer concrete through vibration measurements. Compos. Struct. 136, 11–15 (2016). https://doi.org/10.1016/j.compstruct.2015.09.026

    Article  Google Scholar 

  15. Kwon, S.; Ahn, S.; Koh, H.-I.; Park, J.: Polymer concrete periodic meta-structure to enhance damping for vibration reduction. Compos. Struct. 215, 385–390 (2019). https://doi.org/10.1016/j.compstruct.2019.02.022

    Article  Google Scholar 

  16. Jafari, K.; Tabatabaeian, M.; Joshaghani, A.; Ozbakkaloglu, T.: Optimizing the mixture design of polymer concrete: an experimental investigation. Constr. Build. Mater. 167, 185–196 (2018). https://doi.org/10.1016/j.conbuildmat.2018.01.191

    Article  Google Scholar 

  17. Orak, S.: Investigation of vibration damping on polymer concrete with polyester resin. Cem. Concr. Res. 30, 171–174 (2000). https://doi.org/10.1016/S0008-8846(99)00225-2

    Article  Google Scholar 

  18. Zhao, J.; Gao, D.; Du, X.: Seismic behavior of steel fiber reinforced concrete low-rise shear wall. J. Earthq. Eng. Eng. Vib. 4, (2009). http://en.cnki.com.cn/Article_en/CJFDTotal-DGGC200904014.htm

  19. Lee, L.S.; Karbhari, V.M.; Sikorsky, C.: Structural health monitoring of CFRP strengthened bridge decks using ambient vibrations. Struct. Health Monit. Int. J. 6, 199–214 (2007). https://doi.org/10.1177/1475921707081109

    Article  Google Scholar 

  20. Hu, M.; Wang, A.: Free vibration and stresses analysis of fiber-reinforced viscoelastic composite laminated plates. Eng. Mech. 8, (2010). http://en.cnki.com.cn/Article_en/CJFDTotal-GCLX201008004.htm

  21. Afshar, A.; Jahandari, S.; Rasekh, H.; Shariati, M.; Afshar, A.; Shokrgozar, A.: Corrosion resistance evaluation of rebars with various primers and coatings in concrete modified with different additives. Constr. Build. Mater. 262, 120034 (2020). https://doi.org/10.1016/j.conbuildmat.2020.120034

    Article  Google Scholar 

  22. Trung, N.T.; Alemi, N.; Haido, J.H.; Shariati, M.; Baradaran, S.; Yousif, S.T.: Reduction of cement consumption by producing smart green concretes with natural zeolites. Smart Struct. Syst. 24, 415–425 (2019). https://doi.org/10.12989/SSS.2019.24.3.415

    Article  Google Scholar 

  23. Sarıdemir, M.; Çelikten, S.; Yıldırım, A.: Mechanical and microstructural properties of calcined diatomite powder modified high strength mortars at ambient and high temperatures. Adv. Powder Technol. 31, 3004–3017 (2020). https://doi.org/10.1016/j.apt.2020.05.024

    Article  Google Scholar 

  24. Azreen, N.M.; Rashid, R.S.M.; Mugahed Amran, Y.H.; Voo, Y.L.; Haniza, M.; Hairie, M.; Alyousef, R.; Alabduljabbar, H.: Simulation of ultra-high-performance concrete mixed with hematite and barite aggregates using Monte Carlo for dry cask storage. Constr. Build. Mater. 263, 120161 (2020). https://doi.org/10.1016/j.conbuildmat.2020.120161

    Article  Google Scholar 

  25. Sarıdemir, M.; Çelikten, S.; Çiflikli, M.; Karahancer, M.: Influence of calcined diatomite content and elevated temperatures on the properties of high strength mortars produced with basalt sand. Struct. Concr. (2020). https://doi.org/10.1002/suco.202000063

    Article  Google Scholar 

  26. TS EN 196-1, Methods of testing cement: Part 1: Strength determination, TSE Turkish Standards Institution, Ankara, Turkey (2016)

  27. Sun, X.; Gao, Z.; Cao, P.; Zhou, C.; Ling, Y.; Wang, X.; Zhao, Y.; Diao, M.: Fracture performance and numerical simulation of basalt fiber concrete using three-point bending test on notched beam. Constr. Build. Mater. 225, 788–800 (2019). https://doi.org/10.1016/j.conbuildmat.2019.07.244

    Article  Google Scholar 

  28. Balendran, R.V.; Zhou, F.P.; Nadeem, A.; Leung, A.Y.T.: Influence of steel fibres on strength and ductility of normal and lightweight high strength concrete. Build. Environ. 37, 1361–1367 (2002). https://doi.org/10.1016/S0360-1323(01)00109-3

    Article  Google Scholar 

  29. Olivito, R.S.; Zuccarello, F.A.: An experimental study on the tensile strength of steel fiber reinforced concrete. Compos. B Eng. 41, 246–255 (2010). https://doi.org/10.1016/j.compositesb.2009.12.003

    Article  Google Scholar 

  30. ASTM C348. Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars1,” Annu. B. ASTM Stand., vol. 04, pp. 2–7 (1998)

  31. Altintas, Y.: Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  32. Rao, S.S.: Mechanical Vibrations. Addison-Wesley, Reading (1990)

    MATH  Google Scholar 

  33. Yoo, D.Y.; Shin, H.-O.; Yang, J.M.; Yoon, Y.S.: Material and bond properties of ultra high performance fiber reinforced concrete with micro steel fibers. Compos. B Eng. 58, 122–133 (2014). https://doi.org/10.1016/j.compositesb.2013.10.081

    Article  Google Scholar 

  34. Soulioti, D.V.; Barkoula, N.M.; Paipetis, A.; Matikas, T.E.: Effects of Fibre geometry and volume fraction on the flexural behaviour of steel-fibre reinforced concrete: effect of steel fibres on concrete behaviour. Strain 47, e535–e541 (2011). https://doi.org/10.1111/j.1475-1305.2009.00652.x

    Article  Google Scholar 

  35. Yazıcı, Ş.; İnan, G.; Tabak, V.: Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC. Constr. Build. Mater. 21, 1250–1253 (2007). https://doi.org/10.1016/j.conbuildmat.2006.05.025

    Article  Google Scholar 

  36. Yan, H.; Sun, W.; Chen, H.: The effect of silica fume and steel fiber on the dynamic mechanical performance of high-strength concrete. Cem. Concr. Res. 29, 423–426 (1999). https://doi.org/10.1016/S0008-8846(98)00235-X

    Article  Google Scholar 

  37. Köksal, F.; Altun, F.; Yiğit, İ.; Şahin, Y.: Combined effect of silica fume and steel fiber on the mechanical properties of high strength concretes. Constr. Build. Mater. 22, 1874–1880 (2008). https://doi.org/10.1016/j.conbuildmat.2007.04.017

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a research program supported by the Eskisehir Osmangazi University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Alper Sofuoğlu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This manuscript has not been published in another journal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sofuoğlu, M.A., Çakır, F.H. & Çelikten, S. Influence of Steel Fiber Addition on the Vibrational Characteristic of High Strength Cementitious Composites. Arab J Sci Eng 46, 4677–4685 (2021). https://doi.org/10.1007/s13369-020-05096-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05096-z

Keywords

Navigation