Skip to main content
Log in

Remaining Useful Life Prediction of Super-Capacitors in Electric Vehicles Using Neural Networks

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Batteries for electric vehicles (EVs) have a capacity decay issue as they age. As a result, the use of lithium-ion is becoming more popular with super-capacitors (SCs), particularly in EVs. Over the decrease of carbon dioxide emissions, SC batteries offer a substantial benefit. In EVs, a dependable mechanism that guarantees the SC batteries’ capacity for charging and discharging is crucial. The main obstacle for EVs is the long life of ultra-capacitor battery’s because SCs have a deterioration effect over multiple cycles. Therefore, accurate early prediction of these SC batteries is crucial. The data-based model is more accurate than mechanism-based and model-based methods created for this purpose. The proposed data-driven models, such as machine learning (ML), estimate the electrical parameters for the smooth functioning and working of SCs in addition to considering their operating status. The main factor determining whether electric vehicles can be sustained is an increase in battery cycle life. With a lowest root mean square error of 0.04614 and a mean squared error of 0.002 and an accuracy of 89.6%, ML-based models with various architectures and topologies have been created in this study to reliably estimate the deterioration of SCs capacitance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E.: Environmental and health impacts of air pollution: a review. Front. Public Health 8, 14 (2020)

    Article  Google Scholar 

  2. Khadgi, J.; Thapa, R.; Prasai Joshi, T.; Maskey Byanju, R.: Effectiveness of vehicle-free zone in reducing air pollution. Int. J. Environ. Sci. Technol. 19(2), 839–850 (2022)

    Article  Google Scholar 

  3. Heydarzadeh, H.; Jafari, H.; Karimi, S.: Effects of meteorological parameters and fuel composition on the air pollution production from motor vehicles. Environ. Monit. Assess. 194(4), 236 (2022)

    Article  Google Scholar 

  4. Hu, Q.; Wu, X.; Bian, L.: Comprehensive diagnosis model of environmental impact caused by expressway vehicle emission. Environ. Monit. Assess. 194(11), 796 (2022)

    Article  Google Scholar 

  5. College of Electrical Engineering, Qingdao University, Qingdao, 266071, China and Kai, W.: Synthesis of porous carbon by activation method and its electrochemical performance. Int. J. Electrochem. Sci. 10766–10773, (2018)

  6. Jameel, A.; Gulzar, M. M.: Load frequency regulation of interconnected muli-source multi-area power system with penetration of electric vehicles aggregator. (2023)

  7. Henry, B.: Two billion vehicles projected to be on roads by 2035. Christian Sci. Monit. (2022)

  8. Wu, C.H.; Hung, Y.H.; Hong, C.W.: On-line supercapacitor dynamic models for energy conversion and management. Energy Convers. Manage. 53(1), 337–345 (2012)

    Article  Google Scholar 

  9. Murawwat, S.; Gulzar, M.M.; Alzahrani, A.; Hafeez, G.; Khan, F.A.; Abed, A.M.; et al.: State of charge estimation and error analysis of lithium-ion batteries for electric vehicles using kalman filter and deep neural network. J. Energy Storage 72, 108039 (2023)

    Article  Google Scholar 

  10. Berecibar, M.: Accurate predictions of lithium-ion battery life. Nature 568(7752), 325–326 (2019)

    Article  Google Scholar 

  11. Jing, W.; Lai, C. H.; Wong, W.; Wong, M.: A comprehensive study of battery-supercapacitor hybrid energy storage system for standalone pv power system in rural electrification: Semantic scholar. (1970)

  12. Weigert, T.; Tian, Q.; Lian, K.: State-of-charge prediction of batteries and battery-supercapacitor hybrids using artificial neural networks. J. Power Sources 196(8), 4061–4066 (2011)

    Article  Google Scholar 

  13. Azaïs, P.; Duclaux, L.; Florian, P.; Massiot, D.; Lillo-Rodenas, M.; Linares-Solano, A.; Peres, J.; Jehoulet, C.; Béguin, F.: Causes of supercapacitors ageing in organic electrolyte. J. Power Sources 171, 1046–1053 (2007)

    Article  Google Scholar 

  14. Becker, H.I.: Low voltage electrolytic capacitor. Patentus 2(800), 6160 (2022)

    Google Scholar 

  15. Sharma, P.; Bhatti, T.S.: A review on electrochemical double-layer capacitors. Energy Convers. Manage. 51(12), 2901–2912 (2010)

    Article  Google Scholar 

  16. Gulzar, M.M.; Iqbal, A.; Sibtain, D.; Khalid, M.: An innovative converterless solar pv control strategy for a grid connected hybrid pv/wind/fuel-cell system coupled with battery energy storage. IEEE Access 11, 23245–23259 (2023)

    Article  Google Scholar 

  17. Wang, G.; Zhang, L.; Zhang, J.: Cheminform abstract: a review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2011)

    Article  MathSciNet  Google Scholar 

  18. Largeot, C.; Portet, C.; Chmiola, J.; Taberna, P.-L.; Gogotsi, Y.; Simon, P.: Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 130, 2730–2731 (2008)

    Article  Google Scholar 

  19. Wang, G.; Zhang, L.; Zhang, J.: A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2011)

    Article  MathSciNet  Google Scholar 

  20. Snook, G.A.; Kao, P.; Best, A.S.: Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 196(1), 1–12 (2011)

    Article  Google Scholar 

  21. Xu, D.; Cen, H.: A hybrid energy storage strategy based on multivariable fuzzy coordinated control of photovoltaic grid-connected power fluctuations. IET Renew. Power Gener. 15(8), 1826–1835 (2021)

    Article  Google Scholar 

  22. Liu, Y.; Wang, S.; Xie, Y.; Fernandez, C.; Qiu, J.; Zhang, Y.: A novel adaptive h-infinity filtering method for the accurate soc estimation of lithium-ion batteries based on optimal forgetting factor selection. Int. J. Circuit Theory Appl. 50(10), 3372–86 (2022)

    Article  Google Scholar 

  23. Zhou, D.; Li, Z.; Zhu, J.; Zhang, H.; Hou, L.: State of health monitoring and remaining useful life prediction of lithium-ion batteries based on temporal convolutional network. IEEE Access 8, 53307–53320 (2020)

    Article  Google Scholar 

  24. Zhou, Y.; Huang, Z.; Li, H.; Peng, J.; Liu, W.; Liao, H.: A generalized extended state observer for supercapacitor state of energy estimation with online identified model. IEEE Access 6, 27706–27716 (2018)

    Article  Google Scholar 

  25. Wang, C.; Xiong, R.; Tian, J.; Lu, J.; Zhang, C.: Rapid ultracapacitor life prediction with a convolutional neural network. App. Energy 305, 117819 (2022)

    Article  Google Scholar 

  26. Lü, X.; Qu, Y.; Wang, Y.; Qin, C.; Liu, G.: A comprehensive review on hybrid power system for PEMFC-HEV: Issues and strategies. 171, 1273–1291, (2018). [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0196890418306745

  27. Koubaa, R.; Bacha, S.; Smaoui, M.; krichen, L.: Robust optimization based energy management of a fuel cell/ultra-capacitor hybrid electric vehicle under uncertainty. 200, 117530, (2020). [Online]. Available: https://www.sciencedirect.com/science/article/pii/S036054422030637X

  28. Wu, J.; Zhang, C.; Chen, Z.: An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks. 173, 134–140, (2022). [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0306261916304846

  29. Zhou, Y.; Huang, Y.; Pang, J.; Wang, K.: “Remaining useful life prediction for supercapacitor based on long short-term memory neural network. 440, 227149, (2022). [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0378775319311425

  30. Zhou, D.; Li, Z.; Zhu, J.; Zhang, H.; Hou, L.: “State of health monitoring and remaining useful life prediction of lithium-ion batteries based on temporal convolutional network,” 8, 53307–53320, (2020), conference Name: IEEE Access.

  31. Zhao, Q.; Qin, X.; Zhao, H.; Feng, W.: A novel prediction method based on the support vector regression for the remaining useful life of lithium-ion batteries. 85, 99–108, (2022). [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0026271418301690

  32. (2022) Capacity estimation of lithium-ion cells by combining model-based and data-driven methods based on a sequential extended kalman filter - ScienceDirect. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0360544220323409

  33. Wang, C.; Xiong, R.; Tian, J.; Lu, J.; Zhang, C.: Rapid ultracapacitor life prediction with a convolutional neural network. 305, 117819, (2022). [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0306261921011491

  34. Severson, K.A.; Attia, P.M.; Jin, N.; Perkins, N.; Jiang, B.; Yang, Z.; Chen, M.H.; Aykol, M.; Herring, P.K.; Fraggedakis, D.; Bazant, M.Z.; Harris, S.J.; Chueh, W.C.; Braatz, R.D.: Data-driven prediction of battery cycle life before capacity degradation. Nat. Energy 4(5), 383–391 (2019)

    Article  Google Scholar 

  35. Wei, J.; Dong, G.; Chen, Z.: Remaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle filter and support vector regression. IEEE Trans. Industr. Electron. 65(7), 5634–5643 (2018)

  36. Zhu, M.; Weber, C.; Yang, Y.; Konuma, M.; Starke, U.; Kern, K.; Bittner, A.: “Chemical and electrochemical ageing of carbon materials used in supercapacitor electrodes,” (Jul 2008).

  37. Wenzl, H.; Baring-Gould, E.; Kaiser, R.; Liaw, B.; Lundsager, P.; Manwell, J.; Ruddell, A.; Svoboda, V.: Life prediction of batteries for selecting the technically most suitable and cost effective battery. J. Power Sources 144, 373–384 (2005)

    Article  Google Scholar 

  38. Zhou, Y.; Wang, Y.; Wang, K.; Kang, L.; Peng, F.; Wang, L.; Pang, J.: Hybrid genetic algorithm method for efficient and robust evaluation of remaining useful life of supercapacitors. Appl. Energy 260, 114169 (2020)

    Article  Google Scholar 

  39. Chen, C.; Xiong, R.; Yang, R.; Shen, W.; Sun, F.: State-of-charge estimation of lithium-ion battery using an improved neural network model and extended kalman filter. J. Clean. Prod. 234, 06 (2019)

    Article  Google Scholar 

  40. Tang, X.; Yao, K.; Liu, B.; Hu, W.; Gao, F.: Long-term battery voltage, power, and surface temperature prediction using a model-based extreme learning machine. Energies 11(1), 86 (2018)

    Article  Google Scholar 

  41. Liu, C.; Li, D.; Wang, L.; Li, L.; Wang, K.: Strong robustness and high accuracy in predicting remaining useful life of supercapacitors. APL Mater. 10(6), 061106 (2022)

    Article  Google Scholar 

  42. Xuli Chen, L.D.; Paul, R.: Carbon-based supercapacitors for efficient energy storage. Nat. Sci. Rev. 4, 1–37 (2017)

    Google Scholar 

  43. Se, S.; Freeman, N.: Fuel cells and ultracapacitors in light mobility applications, 21st electric vehicle symposium.

  44. Ren, J.; Lin, X.; Liu, J.; Han, T.; Wang, Z.; Zhang, H.; Li, J.: Engineering early prediction of supercapacitors’ cycle life using neural networks. Mater. Today Energy 18, 100537 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support in dataset generation provided by Jinjin Li [44]. The dataset used in this paper can be accessed freely from https://doi.org/10.1016/j.mtener.2020.100537.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Majid Gulzar.

Additional information

The research presented in this paper builds upon the foundation laid by the submitted thesis titled: ’Electric Vehicles Super-capacitor’s Remaining Useful Life Using Neural Network’, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gillani, S.WuH., Shahid, K., Gulzar, M.M. et al. Remaining Useful Life Prediction of Super-Capacitors in Electric Vehicles Using Neural Networks. Arab J Sci Eng 49, 7327–7340 (2024). https://doi.org/10.1007/s13369-024-08766-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-024-08766-4

Keywords

Navigation