Skip to main content
Log in

Assessment of Hydraulic Fracture Initiation Pressure Using Fracture Mechanics Criterion and Coupled Criterion with Emphasis on the Size Effect

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Hydraulic fracturing is a technique to stimulate oil reservoirs and is a method to estimate in situ stresses. The initiation pressure in hydraulic fracturing, sometimes called the breakdown pressure, is a key parameter used directly in the estimation of in situ stresses. The main weakness of the classical criteria presented for initiation pressure, which are based on the tensile strength of materials, is that they do not include size effects. In this article, using a plane strain numerical model for the fracture mechanics criterion and the coupled criterion, the fracture initiation pressure is obtained and the results are compared with classical models. The results show that when the initial crack length is very small compared to the wellbore radius, then Haimson and Fairhurst’s criterion becomes equivalent to the fracture mechanics criterion. By increasing the ratio of initial crack length to the borehole radius, the fracture initiation pressure obtained from Haimson and Fairhurst’s criterion will have an error. On the other hand, the fracture pressure obtained from the coupled criterion shows a great dependence on the borehole size. If the length scale of the material is much larger than the borehole radius, the fracture mechanics controls the failure mechanism and if the borehole radius is much larger than the Irwin material length scale, then the failure is driven by tensile strength. The assessment made in this article is very important in the field, when the maximum in situ stress is supposed to be estimated based on the hydraulic fracture initiation pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Economides, M.J.; Nolte, K.G.: Reservoir Stimulation. Wiley (2000)

    Google Scholar 

  2. Bunger, A.P.; Lakirouhani, A.; Detournay, E.: Modelling the effect of injection system compressibility and viscous fluid flow on hydraulic fracture breakdown pressure. In: Paper Presented at the ISRM International Symposium on In-Situ Rock Stress (2010)

  3. Spence, D.A.; Turcotte, D.L.: Magma-driven propagation of cracks. J. Geophys. Res. Solid Earth 90(B1), 575–580 (1985). https://doi.org/10.1029/JB090iB01p00575

    Article  Google Scholar 

  4. Rubin, A.M.: Propagation of magma-filled cracks. Annu. Rev. Earth Planet. Sci. Rev. Earth Planet. Sci. 23(1), 287–336 (1995). https://doi.org/10.1146/annurev.ea.23.050195.001443

    Article  Google Scholar 

  5. Murdoch Lawrence, C.: mechanical analysis of idealized shallow hydraulic fracture. J. Geotechn. Geoenviron. Eng. 128(6), 488–495 (2002). https://doi.org/10.1061/(ASCE)1090-0241(2002)128:6(488)

    Article  Google Scholar 

  6. Frank, U.; Barkley, N.: Remediation of low permeability subsurface formations by fracturing enhancement of soil vapor extraction. J. Hazard. Mater. 40(2), 191–201 (1995). https://doi.org/10.1016/0304-3894(94)00069-S

    Article  Google Scholar 

  7. Rudnicki, J.W.: Geomechanics. Int. J. Solids Struct.Struct. 37(1), 349–358 (2000). https://doi.org/10.1016/S0020-7683(99)00098-0

    Article  MathSciNet  Google Scholar 

  8. van As, A.; Jeffrey, R.G.: Hydraulic fracturing as a cave inducement technique at Northparkes mines. In: Massmin 2000 conference, Brisbane Australia, Australasian Inst Mining & Metallurgy, Parkville Victoria (2000)

  9. Jeffrey, R.G.; Chen, Z.; Mills, K.W.; Pegg, S.: Monitoring and measuring hydraulic fracturing growth during preconditioning of a roof rock over a coal longwall panel. In: Andrew, P.B.; John, M.; Rob, J. (Eds.) Effective and Sustainable Hydraulic Fracturing, p. 45. IntechOpen, Rijeka (2013)

    Chapter  Google Scholar 

  10. Arroyo, M.; Trepat, X.: Hydraulic fracturing in cells and tissues: fracking meets cell biology. Curr. Opin. Cell Biol.. Opin. Cell Biol. 44, 1–6 (2017). https://doi.org/10.1016/j.ceb.2016.11.001

    Article  Google Scholar 

  11. Hubbert, M.K.; Willis, D.G.: Mechanics of hydraulic fracturing. Trans. AIME 210(01), 153–168 (1957). https://doi.org/10.2118/686-G

    Article  Google Scholar 

  12. Haimson, B.; Fairhurst, C.: Initiation and extension of hydraulic fractures in rocks. Soc. Petrol. Eng. J. 7(03), 310–318 (1967). https://doi.org/10.2118/1710-PA

    Article  Google Scholar 

  13. Atkinson, C.; Thiercelin, M.: The interaction between the wellbore and pressure-induced fractures. Int. J. Fract.Fract. 59(1), 23–40 (1993). https://doi.org/10.1007/BF00032215

    Article  Google Scholar 

  14. Kanninen, M.F.; Popelar, C.H.: Advanced Fracture Mechanics. Oxford University Press (1985)

    Google Scholar 

  15. Atkinson, B.K.: Fracture Mechanics of Rock. Elsevier (1987)

    Google Scholar 

  16. Rummel, F.; Hansen, J.: Interpretation of hydrofrac pressure recordings using a simple fracture mechanics simulation model. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 26(6), 483–488 (1989). https://doi.org/10.1016/0148-9062(89)91425-3

    Article  Google Scholar 

  17. Detournay, E.; Carbonell, R.: Fracture-mechanics analysis of the breakdown process in minifracture or leakoff test. SPE Prod. Facil.Facil. 12(03), 195–199 (1997). https://doi.org/10.2118/28076-PA

    Article  Google Scholar 

  18. Lakirouhani, A.; Bunger, A.; Detournay, E.: Modeling initiation of hydraulic fractures from a wellbore. In: Paper Presented at the ISRM International Symposium—5th Asian Rock Mechanics Symposium (2008)

  19. Jin, X.; Shah, S.N.; Roegiers, J.-C.; Hou, B.: Breakdown pressure determination—a fracture mechanics approach. In: Paper Presented at the SPE Annual Technical Conference and Exhibition (2013). https://doi.org/10.2118/166434-MS

  20. Lecampion, B.; Desroches, J.: Simultaneous initiation and growth of multiple radial hydraulic fractures from a horizontal wellbore. J. Mech. Phys. Solids 82, 235–258 (2015). https://doi.org/10.1016/j.jmps.2015.05.010

    Article  MathSciNet  Google Scholar 

  21. Lakirouhani, A.; Detournay, E.; Bunger, A.P.: A reassessment of in situ stress determination by hydraulic fracturing. Geophys. J. Int.. J. Int. 205(3), 1859–1873 (2016). https://doi.org/10.1093/gji/ggw132

    Article  Google Scholar 

  22. Ito, T.; Hayashi, K.: Physical background to the breakdown pressure in hydraulic fracturing tectonic stress measurements. Int. J. Rock Mechan. Min. Sci. Geomech. Abstr. 28(4), 285–293 (1991). https://doi.org/10.1016/0148-9062(91)90595-D

    Article  Google Scholar 

  23. Carter, B.J.: Size and stress gradient effects on fracture around cavities. Rock Mech. Rock Eng. 25(3), 167–186 (1992). https://doi.org/10.1007/BF01019710

    Article  Google Scholar 

  24. Carter, B.J.; Lajtai, E.Z.; Yuan, Y.: Tensile fracture from circular cavities loaded in compression. Int. J. Fract.Fract. 57(3), 221–236 (1992). https://doi.org/10.1007/BF00035074

    Article  Google Scholar 

  25. Leguillon, D.: Strength or toughness? A criterion for crack onset at a notch. Eur. J. Mech. A. Solids 21(1), 61–72 (2002). https://doi.org/10.1016/S0997-7538(01)01184-6

    Article  MathSciNet  Google Scholar 

  26. Leguillon, D.; Quesada, D.; Putot, C.; Martin, E.: Prediction of crack initiation at blunt notches and cavities—size effects. Eng. Fract. Mech. 74(15), 2420–2436 (2007). https://doi.org/10.1016/j.engfracmech.2006.11.008

    Article  Google Scholar 

  27. Lecampion, B.: Modeling size effects associated with tensile fracture initiation from a wellbore. Int. J. Rock Mech. Min. Sci. 56, 67–76 (2012). https://doi.org/10.1016/j.ijrmms.2012.07.024

    Article  Google Scholar 

  28. Chuprakov, D.; Melchaeva, O.; Prioul, R.: Injection-sensitive mechanics of hydraulic fracture interaction with discontinuities. Rock Mech. Rock Eng. 47(5), 1625–1640 (2014). https://doi.org/10.1007/s00603-014-0596-7

    Article  Google Scholar 

  29. Molnár, G.; Doitrand, A.; Estevez, R.; Gravouil, A.: Toughness or strength? Regularization in phase-field fracture explained by the coupled criterion. Theoret. Appl. Fract. Mech.. Appl. Fract. Mech. 109, 102736 (2020). https://doi.org/10.1016/j.tafmec.2020.102736

    Article  Google Scholar 

  30. Zhou, Z.-L.; Yang, D.-S.; Chen, W.-Z.; Zhang, X.; Wu, B.-L.; Zhang, F.-S.: Numerical study of initiation pressure in hydraulic fracturing by dual criterion for non-circular wellbore. Eng. Fract. Mech. 252, 107804 (2021). https://doi.org/10.1016/j.engfracmech.2021.107804

    Article  Google Scholar 

  31. Jolfaei, S.; Lakirouhani, A.: initiation pressure and location of fracture initiation in elliptical wellbores. Geotech. Geol. Eng.. Geol. Eng. (2023). https://doi.org/10.1007/s10706-023-02528-z

    Article  Google Scholar 

  32. Jolfaei, S.; Lakirouhani, A.: Sensitivity analysis of effective parameters in borehole failure, using neural network. Adv. Civ. Eng. 2022, 4958004 (2022). https://doi.org/10.1155/2022/4958004

    Article  Google Scholar 

  33. Amadei, B.; Stephansson, O.: Rock Stress and Its Measurement. Chapman & Hall, Dordrecht (1997)

    Book  Google Scholar 

  34. Reddy, J.N.: Introduction to the Finite Element Method, 4th edn. McGraw-Hill Education, New York (2019)

    Google Scholar 

  35. Rice, J.R.: A path independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl. Mech. 35(2), 379–386 (1968). https://doi.org/10.1115/1.3601206

    Article  Google Scholar 

  36. Tada, H.; Paris, P.C.; Irwin, G.R.: The Stress Analysis of Cracks Handbook, 3rd edn. ASME Press (2000) https://doi.org/10.1115/1.801535

    Book  Google Scholar 

  37. Jaeger, J.C.; Cook, N.G.; Zimmerman, R.: Fundamentals of Rock Mechanics. Wiley (2009)

    Google Scholar 

  38. Lakirouhani, A.; Jolfaei, S.: Hydraulic fracturing breakdown pressure and prediction of maximum horizontal in situ stress. Adv. Civ. Eng. 2023, 8180702 (2023). https://doi.org/10.1155/2023/8180702

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Lakirouhani.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakirouhani, A., Jolfaei, S. Assessment of Hydraulic Fracture Initiation Pressure Using Fracture Mechanics Criterion and Coupled Criterion with Emphasis on the Size Effect. Arab J Sci Eng 49, 5897–5908 (2024). https://doi.org/10.1007/s13369-023-08554-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08554-6

Keywords

Navigation