Skip to main content
Log in

Injection-Sensitive Mechanics of Hydraulic Fracture Interaction with Discontinuities

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

We develop a new analytical model, called OpenT, that solves the elasticity problem of a hydraulic fracture (HF) contact with a pre-existing discontinuity natural fracture (NF) and the condition for HF re-initiation at the NF. The model also accounts for fluid penetration into the permeable NFs. For any angle of fracture intersection, the elastic problem of a blunted dislocation discontinuity is solved for the opening and sliding generated at the discontinuity. The sites and orientations of a new tensile crack nucleation are determined based on a mixed stress- and energy-criterion. In the case of tilted fracture intersection, the finite offset of the new crack initiation point along the discontinuity is computed. We show that aside from known controlling parameters such stress contrast, cohesional and frictional properties of the NFs and angle of intersection, the fluid injection parameters such as the injection rate and the fluid viscosity are of first-order in the crossing behavior. The model is compared to three independent laboratory experiments, analytical criteria of Blanton, extended Renshaw−Pollard, as well as fully coupled numerical simulations. The relative computational efficiency of OpenT model (compared to the numerical models) makes the model attractive for implementation in modern engineering tools simulating hydraulic fracture propagation in naturally fractured environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adachi JI, Detournay E (2002) Self-similar solution of a plane-strain fracture driven by a power-law fluid. Int J Numer Anal Meth Geomech 26(6):579–604. doi:10.1002/nag.213

    Article  Google Scholar 

  • Atkinson C, Thiercelin M (1995) The interaction between the wellbore and pre-existing fractures. Int J Fracture 73(3):183–200

    Article  Google Scholar 

  • Atkinson C, Thiercelin M (1997) Pressurization of a fractured wellbore. Int J Fracture 83(3):243–273

    Article  Google Scholar 

  • Barber JR (2010) Elasticity. Solid mechanics and its applications, 3rd edn. Springer, Dordrecht

    Book  Google Scholar 

  • Beugelsdijk LJL, Pater CJd, Sato K (2000) Experimental hydraulic fracture propagation in a multi-fractured medium. In: SPE Asia Pacific conference on integrated modelling for asset management, Society of Petroleum Engineers

  • Blanton TL (1986) Propagation of hydraulically and dynamically induced fractures in naturally fractured reservoirs. In: SPE unconventional gas technology symposium, Society of Petroleum Engineers

  • Chuprakov DA, Akulich AV, Siebrits E, Thiercelin M (2011) Hydraulic-fracture propagation in a naturally fractured reservoir. In: SPE production and operations, vol 26 (1). doi:10.2118/128715-pa

  • Chuprakov D, Melchaeva O, Prioul R (2013) Hydraulic fracture propagation across a weak discontinuity controlled by fluid injection. In: Bunger A, McLennan J, Jeffrey R (eds) Effective and sustainable hydraulic fracturing, InTech, pp 183–210. doi:44712

  • Cipolla CL, Warpinski NR, Mayerhofer MJ (2008) Hydraulic fracture complexity: diagnosis, remediation, and exploitation. In: SPE Asia Pacific oil and gas conference and exhibition, Society of Petroleum Engineers

  • Cipolla CL, Williams MJ, Weng X, Mack MG, Maxwell SC (2010) Hydraulic fracture monitoring to reservoir simulation: maximizing value. SPE annual technical conference and exhibition, Society of Petroleum Engineers

  • Crouch SL, Starfield AM (1983) Boundary element methods in solid mechanics. George Allen & Unwin, London

    Google Scholar 

  • Dahi-Taleghani A, Olson JE (2011) Numerical modeling of multistranded-hydraulic-fracture propagation: accounting for the interaction between induced and natural fractures. In: SPE Journal (09). doi:10.2118/124884-pa

  • de Pater CJ, Beugelsdijk LJL (2005) Experiments and numerical simulation of hydraulic fracturing in naturally fractured rock. In: 40th U.S. rock mechanics symposium and 5th U.S.-Canada rock mechanics symposium, American Rock Society Association

  • Detournay E (2004) Propagation regimes of fluid-driven fractures in impermeable rocks. Int J Geomech 4(1):35–45. doi:10.1061/(asce)1532-3641(2004)4:1(35)

    Article  Google Scholar 

  • Garagash DI (2006) Propagation of a plane-strain hydraulic fracture with a fluid lag: early-time solution. Int J Solids Struct 43(18–19):5811–5835. doi:10.1016/j.ijsolstr.2005.10.009

    Article  Google Scholar 

  • Garagash DI, Detournay E (2000) The tip region of a fluid-driven fracture in an elastic medium. J Appl Mech Trans ASME 67(1):183–192

    Article  Google Scholar 

  • Garagash DI, Detournay E (2005) Plane-strain propagation of a fluid-driven fracture: small toughness solution. J Appl Mech Trans ASME 72(6):916–928. doi:10.1115/1.2047596

    Article  Google Scholar 

  • Garagash DI, Detournay E (2007) Erratum: plane-strain propagation of a fluid-driven fracture: small toughness solution (Journal of Applied Mechanics (2005) 72:6 (916-928)). J Appl Mech Trans ASME 74(4):832. doi:10.1115/1.2745828

    Article  Google Scholar 

  • Gil I, Nagel N, Sanchez-Nagel M, Damjanac B (2011) The Effect of operational parameters on hydraulic fracture propagation in naturally fractured reservoirs—getting control of the fracture optimization process. In: 45th US Rock mechanics/geomechanics symposium, American Rock Society Association

  • Gu H, Weng X (2010) Criterion for fractures crossing frictional interfaces at non-orthogonal angles. In: 44th US rock mechanics symposium and 5th U.S.-Canada rock mechanics symposium, American Rock Society Association

  • Gu H, Weng X, Lund JB, Mack MG, Ganguly U, Suarez-Rivera R (2011) Hydraulic fracture crossing natural fracture at non-orthogonal angles, a criterion, its validation and applications. In: SPE hydraulic fracturing technology conference, Society of Petroleum Engineers

  • Hills DA, Kelly PA, Dai DN, Korsunsky AM (1996) Solution of crack problems., The distributed dislocation techniqueKluwer Academic Publishers, London

    Book  Google Scholar 

  • Jaeger JC, Cook NGW, Zimmermann RW (2007) Fundamentals of rock mechanics, 4th edn. Blackwell Publishing, Malden

    Google Scholar 

  • Janssen M, Zuidema J, Wanhill RJH (2004) Fracture mechanics. Spon Press, Abingdon

    Google Scholar 

  • Jeffrey RG, Zhang X, Thiercelin MJ (2009) Hydraulic fracture offsetting in naturally fractured reservoirs: quantifying a long-recognized process. In: SPE hydraulic fracturing technology conference, Society of Petroleum Engineers

  • Kresse O, Weng X, Wu R, Gu H (2012) Numerical modeling of hydraulic fractures interaction in complex naturally fractured formations. American Rock Society Association

  • Kresse O, Weng X, Chuprakov D, Prioul R, Cohen C (2013) Chapter 9: effect of flow rate and viscosity on complex fracture development in UFM model. In: Bunger A, McLennan J, Jeffrey R (eds) Effective and sustainable hydraulic fracturing, InTech, p 183–210

  • Leguillon D (2002) Strength or toughness? A criterion for crack onset at a notch. Eur J Mech A-Solid 21(1):61–72 S0997-7538(01)01184-6

    Article  Google Scholar 

  • Leguillon D, Murer S (2008) A criterion for crack kinking out of an interface. Key Eng Mater 385–387:9–12

    Article  Google Scholar 

  • Leguillon D, Yosibash Z (2003) Crack onset at a v-notch. Influence of the notch tip radius. Int J Fracture 122(1–2):1–21

    Article  Google Scholar 

  • McLennan JD, Tran DT, Zhao N, Thakur SV, Deo MD, Gil IR, Damjanac B (2010) Modeling fluid invasion and hydraulic fracture propagation in naturally fractured formations: a three-dimensional approach. In: SPE international symposium and exhibition on formation damage control, Society of Petroleum Engineers

  • Nagel NB, Gil I, Sanchez-nagel M, Damjanac B (2011) Simulating hydraulic fracturing in real fractured rocks—overcoming the limits of Pseudo3D models. In: SPE hydraulic fracturing technology conference, Society of Petroleum Engineers

  • Olson JE, Taleghani AD (2009) Modeling simultaneous growth of multiple hydraulic fractures and their interaction with natural fractures. In: SPE hydraulic fracturing technology conference, Society of Petroleum Engineers

  • Olson JE, Wu K (2012) Sequential vs. simultaneous multizone fracturing in horizontal wells: insights from a non-planar, multifrac numerical model. In: SPE hydraulic fracturing technology conference, Society of Petroleum Engineers

  • Renshaw CE, Pollard DD (1995) An experimentally verified criterion for propagation across unbounded frictional interfaces in brittle, linear elastic-materials. Int J Rock Mech Min Sci Geomech Abstr 32(3):237–249

    Article  Google Scholar 

  • Shen B, Stephansson O (1993) Numerical-analysis of mixed mode-I and mode-II fracture propagation. Int J Rock Mech Min Sci Geomech Abstr 30(7):861–867

    Article  Google Scholar 

  • Shen B, Stephansson O (1994) Modification of the G-criterion for crack propagation subjected to compression. Eng Fract Mech 47(2):177–189

    Article  Google Scholar 

  • Valko P, Economides MJ (1995) Hydraulic fracture mechanics. John Wiley & Sons, Chichister

    Google Scholar 

  • Warpinski NR, Teufel LW (1987) Influence of geologic discontinuities on hydraulic fracture propagation (includes associated papers 17011 and 17074). SPE J Pet Technol 39(2):209–220. doi:10.2118/13224-pa

    Article  Google Scholar 

  • Weng X, Kresse O, Cohen CE, Wu R, Gu H (2011) Modeling of hydraulic-fracture-network propagation in a naturally fractured formation. In: SPE Journal, Society of Petroleum Engineers

  • Wu R, Kresse O, Weng X, Cohen C-E, Gu H (2012) Modeling of interaction of hydraulic fractures in complex fracture networks. In: SPE hydraulic fracturing technology conference, Society of Petroleum Engineers

  • Zhang X, Jeffrey RG (2006) The role of friction and secondary flaws on deflection and re-initiation of hydraulic fractures at orthogonal pre-existing fractures. Geophys J Int 166(3):1454–1465. doi:10.1111/j.1365-246X.2006.03062.x

    Article  Google Scholar 

  • Zhang X, Jeffrey RG (2008) Reinitiation or termination of fluid-driven fractures at frictional bedding interfaces. J Geophys Res-Sol Ea 113(B08416):1–16 Artn B08416

    Google Scholar 

  • Zhang X, Jeffrey RG, Thiercelin M (2007) Deflection and propagation of fluid-driven fractures at frictional bedding interfaces: a numerical investigation. J Struct Geol 29(3):396–410. doi:10.1016/j.jsg.2006.09.013

    Article  Google Scholar 

  • Zhang X, Jeffrey RG, Thiercelin M (2009) Mechanics of fluid-driven fracture growth in naturally fractured reservoirs with simple network geometries. J Geophys Res 114(B12406):1–16. doi:10.1029/2009JB006549

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Xi Zhang and Rob Jeffrey for providing support with MineHF2D code. They also thank Leonid Germanovich, Xiaowei Weng and Brice Lecampion for useful discussions, and Schlumberger for permission to publish the paper. Finally, at the review stage, they thank Alexei Savitski for insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Chuprakov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuprakov, D., Melchaeva, O. & Prioul, R. Injection-Sensitive Mechanics of Hydraulic Fracture Interaction with Discontinuities. Rock Mech Rock Eng 47, 1625–1640 (2014). https://doi.org/10.1007/s00603-014-0596-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-014-0596-7

Keywords

Navigation