Skip to main content
Log in

Single-Phase, Seven-Level Inverter with Triple Voltage Boosting and Self DC-Link Voltage Balancing

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, a two-stage, single-phase, multilevel dc/ac converter for PV system is proposed. The typical two-stage inverter in PV systems requires a high dc-link voltage, and a step-up dc/dc converter is used. However, a two-stage power conversion requires a high number of power electronic components, resulting in higher cost and lower efficiency. Compared to the similar seven-level inverter, the proposed topology provides three times step-up voltage ratio and a smaller number of circuit components. The introduced topology consists of two stages, the front stage is a step-up dc/dc converter-based switched capacitor circuit. This stage provides high voltage boasting ratio and self-balancing dc-link voltage capacitors capability. Furthermore, a soft switching operation for the power switching devices is implemented using the LC-resonant circuit; thus, peak current amplitude can be regulated, electromagnetic noise and switching losses are significantly decreased. The second stage is a seven-level dc/ac inverter and has the advantages of fewer numbers of semiconductor devices. The operating principles and the modulation scheme of both stages are analyzed and discussed. Simulation and experimental results are provided to prove the effectiveness of the presented topology under different operating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Gulzar, M.M.; Iqbal, A.; Sibtain, D.; Khalid, M.: An innovative converterless solar PV control strategy for a grid connected hybrid PV/wind/fuel-cell system coupled with battery energy storage. IEEE Access 11, 23245–23259 (2023)

    Article  Google Scholar 

  2. Grigoletto, F.B.: Five-level transformerless inverter for single-phase solar photovoltaic applications. IEEE J. Emerg. Sel. Top. Power Electron. 8(4), 3411–3422 (2020)

    Article  Google Scholar 

  3. Khan, M.N.H.; Forouzesh, M.; Siwakoti, Y.P.; Li, L.; Kerekes, T.; Blaabjerg, F.: Transformerless inverter topologies for single-phase photovoltaic systems: a comparative review. IEEE J. Emerg. Sel. Top. Power Electron. 8(1), 805–835 (2020)

    Article  Google Scholar 

  4. Ali, J.S.; Sandeep, N.; Almakhles, D.; Yaragatti, U.R.: A five-level boosting inverter for PV application. IEEE J. Emerg. Sel. Top. Power Electron. 9(4), 1–10 (2021)

    Google Scholar 

  5. Priyadarshi, A.; Kar, P.K.; Karanki, S.B.: A single source transformer-less boost multilevel inverter topology with self-voltage balancing. IEEE Trans. Ind. Appl. 56(4), 3954–3965 (2020)

    Google Scholar 

  6. Sathik, M.J.; Sandeep, N.; Almakhles, D.J.; Yaragatti, U.R.: A five-level boosting inverter for PV applications. IEEE J. Emerg. Sel. Top. Power Electron. 9(4), 5016–5025 (2021)

    Article  Google Scholar 

  7. Lee, S.S.; Bak, Y.; Kim, S.; Joseph, A.; Lee, K.: New family of boost switched-capacitor seven-level inverters (BSC7LI). IEEE Trans. Power Electron. 34, 10471–10479 (2019)

    Article  Google Scholar 

  8. Amamra, S.A.; Meghriche, K.; Cheri, A.; Francois, B.: Multilevel inverter topology for renewable energy grid integration. IEEE Trans. Ind. Electron. 64(11), 8855–8866 (2017)

    Article  Google Scholar 

  9. Vijeh, M.; Rezanejad, M.; Samadaei, E.; Bertilsson, K.: A general review of multilevel inverters based on main submodules: structural point of view. IEEE Trans. Power Electron. 34, 9479–9502 (2019)

    Article  Google Scholar 

  10. Odeh, C.I.; Lewicki, A.; Morawiec, M.: A single-carrier-based pulse width modulation template for cascaded H-bridge multilevel inverters. IEEE Access 9, 42182–42191 (2021)

    Article  Google Scholar 

  11. Yu, H.; Chen, B.; Yao, W.; Lu, Z.: Hybrid seven-level converter based on T-type converter and H-bridge cascaded under SPWM and SVM. IEEE Trans. Power Electron. 33(1), 689–702 (2018)

    Article  Google Scholar 

  12. Taghvaie, A.; Haque, M.E.; Saha, S.; Mahmud, M.A.: A new step-up switched-capacitor voltage balancing converter for NPC multilevel inverter-based solar PV system. IEEE Access 8, 83940–83952 (2020)

    Article  Google Scholar 

  13. Sathik, M.J.; Sandeep, N.; Blaabjerg, F.: High gain active neutral point clamped seven-level self-voltage balancing inverter. IEEE Trans. Circuits Syst. II, Exp. Briefs 67(11), 2567–2571 (2020)

    Google Scholar 

  14. Siwakoti, Y.; Mahajan, A.; Rogers, D.; Blaabjerg, F.: A novel seven-level active neutral point clamped converter with reduced active switching devices and DC-link voltage. IEEE Trans. Power Electron. 34, 10492–10508 (2019)

    Article  Google Scholar 

  15. Zeng, J.; Lin, W.; Liu, J.: Switched-capacitor-based active-neutral-point-clamped seven-level inverter with natural balance and boost ability. IEEE Access 7, 126889–126896 (2019)

    Article  Google Scholar 

  16. Lee, S.S.; Lim, C.S.; Siwakoti, Y.P.; Lee, K.-B.: Hybrid seven-level boost active-neutral-point-clamped (H-7L-BANPC) inverter. IEEE Trans. Circuits Syst. II Express Briefs 67(10), 2044–2048 (2020)

    Google Scholar 

  17. Karasani, R.R.; Borghate, V.B.; Meshram, P.M.; Suryawanshi, H.M.; Sabyasachi, S.: A three-phase hybrid cascaded modular multilevel inverter for renewable energy environment. IEEE Trans. Power Electron. 32(2), 1070–1087 (2017)

    Article  Google Scholar 

  18. Lee, S.S.; Lee, K.: Dual-T-type seven-level boost active-neutral-point-clamped inverter. IEEE Trans. Power Electron. 34, 6031–6035 (2019)

    Article  Google Scholar 

  19. Samadaei, E.; Sheikholeslami, A.; Gholamian, S.A.; Adabi, J.: A square T-type (ST-type) module for asymmetrical multilevel inverters. IEEE Trans. Power Electron. 33(2), 987–996 (2018)

    Article  Google Scholar 

  20. Davis, T.T.; Dey, A.: Investigation on extending the DC bus utilization of a single-source five-level inverter with single capacitor-fed H-bridge per phase. IEEE Trans. Power Electron. 34(3), 2914–2922 (2019)

    Article  Google Scholar 

  21. Niu, D.; Gao, F.; Wang, P.; Zhou, K.; Qin, F.; Ma, Z.: A nine-level T-type packed U-cell inverter. IEEE Trans. Power Electron. 35(2), 1171–1175 (2020)

    Article  Google Scholar 

  22. Siddique, M.D.; Saad, M.; Shah, N.M.; Ali, J.S.M.; Meeraj, M.; Iqbal, A.; Al-Hitmi, M.A.: A new single phase single switched-capacitor based nine-level boost inverter topology with reduced switch count and voltage stress. IEEE Access 7, 174178–174188 (2019)

    Article  Google Scholar 

  23. Sathik, M.J.; Bhatnagar, K.; Sandeep, N.; Blaabjerg, F.: An improved seven-level PUC inverter topology with voltage boosting. IEEE Trans. Circuits Syst. II Express Briefs 67(1), 127–131 (2020)

    Google Scholar 

  24. Roy, T.; Sadhu, P.K.: A step-up multilevel inverter topology using novel switched capacitor converters with reduced components. IEEE Trans. Ind. Electron. 68(1), 236–247 (2021)

    Article  Google Scholar 

  25. Saeedian, M.; Adabi, M.E.; Hosseini, S.M.; Adabi, J.; Pouresmaeil, E.: A novel Step-up single source multilevel inverter: topology, operating principle, and modulation. IEEE Trans. Power Electron. 34(4), 3269–3282 (2019)

    Article  Google Scholar 

  26. Bahrami, A.; Narimani, M.: A new five-level T-type nested neutral point clamped (T-NNPC) converter. IEEE Trans. Power Electron. 34(11), 1053410545 (2019)

    Article  Google Scholar 

  27. Zeng, J.; Wu, J.; Liu, J.; Guo, H.: A quasi-resonant switched-capacitor multilevel inverter with self-voltage balancing for single-phase high-frequency AC microgrids. IEEE Trans. Power Electron. 13(5), 2669–2679 (2017)

    Google Scholar 

  28. Sun, X.; Wang, B.; Zhou, Y.; Wang, W.; Du, H.; Lu, Z.: A single DC source cascaded seven-level inverter integrating switched-capacitor techniques. IEEE Trans. Ind. Electron. 63(11), 7184–7194 (2016)

    Article  Google Scholar 

  29. Liu, J.; Zhu, X.; Zeng, J.: A seven-level inverter with self-balancing and low-voltage stress. IEEE J. Emerg. Sel. Top. Power Electron. 8(1), 685–696 (2020)

    Article  Google Scholar 

  30. Topal, H.; Taner, T.; Naqvi, S.A.; Altınsoy, Y.; Amirabedin, E.; Ozkaymak, M.: Exergy analysis of a circulating fluidized bed power plant co-firing with olive pits: a case study of power plant in Turkey. Energy 140, 40–46 (2017). https://doi.org/10.1016/j.energy.2017.08.042

    Article  Google Scholar 

  31. Taner, T.; Naqvi, S.A.; Ozkaymak, M.: Techno-economic analysis of a more efficient hydrogen generation system prototype: a case study of PEM electrolyzer with Cr-C coated SS304 bipolar plates. Fuel Cells (2019). https://doi.org/10.1002/fuce.201700225

    Article  Google Scholar 

  32. Taner, T.; Sivrioglu, M.: A techno-economic and cost analysis of a turbine power plant: a case study for sugar plant. Renew. Sustain. Energy Rev. 78, 722–730 (2017). https://doi.org/10.1016/j.rser.2017.04.104

    Article  Google Scholar 

  33. Najafi, E.; Yatim, A.H.M.: Design and implementation of a new multilevel inverter topology. IEEE Trans. Ind. Electron. 59(11), 4148–4154 (2012)

    Article  Google Scholar 

  34. Li, X.; Dusmez, S.; Prasanna, U.R.; Akin, B.; Rajashekara, K.: A new SVPWM modulated input switched multilevel converter for grid-connected PV energy generation systems. IEEE J. Emerg. Sel. Top. Power Electron. 2(4), 920–930 (2014)

    Article  Google Scholar 

  35. Khan, S.A.; Guo, Y.; Habib Khan, M.N. Siwakoti, Y.; Zhu, J.: Model predictive control without weighting factors for T-type multilevel inverters with magnetic-link and series stacked AC–DC modules. In: 2019 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 5603–5609 (2019)

  36. Chen, J.; Liu, D.; Ding, K.; Wang, C.; Chen, Z.: A single-phase double T-type seven-level inverter. In: 2018 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 6344–6349 (2018)

  37. Wu, F.; Duan, J.; Feng, F.: Modified single-carrier multilevel sinusoidal pulse width modulation for asymmetrical insulated gate bipolar transistor-clamped grid-connected inverter. IET Power Electron. 8(8), 1531–1541 (2015)

    Article  Google Scholar 

  38. Choi, J.; Kang, F.: Seven-level PWM inverter employing series-connected capacitors paralleled to a single DC voltage source. IEEE Trans. Ind. Electron. 62(6), 3448–3459 (2015)

    Google Scholar 

  39. Chen, J.; Wang, C.; Li, J.: A single-phase step-up seven-level inverter with a simple implementation method for level-shifted modulation schemes. IEEE Access 7, 146552–146565 (2019)

    Article  Google Scholar 

  40. Hinago, Y.; Koizumi, H.: A switched-capacitor inverter using series/parallel conversion with inductive load. IEEE Trans. Ind. Electron. 59(2), 878–887 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Alsolami.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsolami, M. Single-Phase, Seven-Level Inverter with Triple Voltage Boosting and Self DC-Link Voltage Balancing. Arab J Sci Eng 49, 6815–6830 (2024). https://doi.org/10.1007/s13369-023-08523-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08523-z

Keywords

Navigation