Skip to main content

Advertisement

Log in

High Performance Three-Phase, Three-Port, Five-Level, DC/AC Inverter Based Switched Capacitor Circuit for Renewable Energy Application

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Integration of multilevel inverters with renewable energy sources have been the subject of many research projects. Numerous topologies of multilevel inverters have been investigated for stand-alone and grid-connected PV systems. The high number of switching devices, complexity, large size, voltage imbalance, and high cost are main drawbacks of the conventional topologies. This paper presents a new three-phase, three-port, five-level inverter based on a switched-capacitor circuit for PV applications. Compared to the conventional topologies, the proposed inverter has voltage boosting capability and multilevel operation without using clamping diodes or flying capacitors, simplifying the control algorithms and improving the reliability, efficiency, and lifetime. The presented multilevel inverter offers 25% reduction in power devices counts and 50% reduction in flying capacitors. The proposed inverter solves the capacitor voltage balancing issue of the conventional topologies and achieves the lowest voltage stress, making it suitable for high voltage applications. Additionally, the new topology harnesses the superior features of silicon-carbide devices; hence, a fast-switching speed can be employed to reduce size of the storage elements and output filter requirements. Furthermore, the soft-switching operation is realized to regulate the charging current of the capacitor. The operating principle of the proposed topology is investigated, and its properties are compared to the traditional multilevel inverters. A laboratory prototype was built to validate the effectiveness of the proposed circuit, simulation and experimental results for the proposed inverter are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Elavarasan, R.M., et al.: A comprehensive review on renewable energy development, challenges, and policies of leading indian states with an international perspective. IEEE Access 8, 74432–74457 (2020)

    Article  Google Scholar 

  2. Amamra, S.A.; Meghriche, K.; Cherifi, A.; Francois, B.: Multilevel inverter topology for renewable energy grid integration. IEEE Trans. Ind. Electron. 64(11), 8855–8866 (2017)

    Article  Google Scholar 

  3. Omer, P.; Kumar, J.; Surjan, B.S.: A review on reduced switch count multilevel inverter topologies. IEEE Access 8, 22281–22302 (2020)

    Article  Google Scholar 

  4. Bana, P.R.; Panda, K.P.; Naayagi, R.T.; Siano, P.; Panda, G.: Recently developed reduced switch multilevel inverter for renewable energy integration and drives application: topologies, comprehensive analysis and comparative evaluation. IEEE Access 7, 54888–54909 (2019)

    Article  Google Scholar 

  5. Mondol, M.H.; Tur, M.R.; Biswas, S.P.; Hosain, M.K.; Shuvo, S.; Hossain, E.: Compact three phase multilevel inverter for low and medium power photovoltaic systems. IEEE Access 8, 60824–60837 (2020)

    Article  Google Scholar 

  6. Vijeh, M.; Rezanejad, M.; Samadaei, E.; Bertilsson, K.: A general review of multilevel inverters based on main submodules: Structural point of view. IEEE Trans. Power Electron. 34(10), 9479–9502 (2019)

    Article  Google Scholar 

  7. Salem, A.; Van Khang, H.; Robbersmyr, K.G.; Norambuena, M.; Rodriguez, J.: Voltage source multilevel inverters with reduced device count: topological review and novel comparative factors. IEEE Trans. Power Electron. 36(3), 27202747 (2021)

    Article  Google Scholar 

  8. Mahdavi, M.S.; Gharehpetian, G.B.; Mahdavi, Z.; Keyhani, A.: Eighteen-step inverter: a low-loss three-phase inverter for low-cost standalone applications. IEEE J. Emerg. Sel. Topics Power Electron. 9(1), 970–979 (2021)

    Article  Google Scholar 

  9. Zeng, J.; Lin, W.; Liu, J.: Switched-capacitor-based active-neutral- point-clamped seven-level inverter with natural balance and boost ability. IEEE Access 7, 126889–126896 (2019)

    Article  Google Scholar 

  10. Wang, K.; Zheng, Z.; Li, Y.: Topology and control of a four-level ANPC inverter. IEEE Trans. Power Electron. 35(3), 2342–2352 (2020)

    Article  Google Scholar 

  11. Wang, K.; Zheng, Z.; Li, Y.: A novel carrier-overlapped PWM method for four-level neutral-point clamped converters. IEEE Trans. Power Electron. 34(1), 7–12 (2019)

    Article  Google Scholar 

  12. Taghvaie, A.; Haque, M.E.; Saha, S.; Mahmud, M.A.: A new step-up switched-capacitor voltage balancing converter for NPC multilevel inverter-based solar PV system. IEEE Access 8, 83940–83952 (2020)

    Article  Google Scholar 

  13. Tian, K.; Wu, B.; Narimani, M.; Xu, D.; Cheng, Z.; Zargari, N.R.: A capacitor voltage-balancing method for nested neutral point clamped (NNPC) inverter. IEEE Trans. Power Electron. 31(3), 2575–2583 (2016)

    Article  Google Scholar 

  14. Bahrami, A.; Narimani, M.: A sinusoidal pulsewidth modulation (SPWM) technique for capacitor voltage balancing of a nested T-type four- level inverter. IEEE Trans. Power Electron. 34(2), 1008–1012 (2019)

    Article  Google Scholar 

  15. di Benedetto, M.; Lidozzi, A.; Solero, L.; Crescimbini, F.; Grbović, P.J.: Five-level E-type inverter for grid-connected applications. IEEE Trans. Industry Appl. 54(5), 5536–5548 (2018)

    Article  Google Scholar 

  16. Majumder, M.G.; Yadav, A.K.; Gopakumar, K.; Raj, K.; Loganathan, U.; Franquelo, L.G.: A 5-Level inverter scheme using single DC link with reduced number of floating capacitors and switches for open-end IM drives. IEEE Trans. Ind. Electron. 67(2), 960–968 (2020)

    Article  Google Scholar 

  17. He, L.; Cheng, C.: A flying-capacitor-clamped five-level inverter based on bridge modular switched-capacitor topology. IEEE Trans. Industr. Electron. 63(12), 7814–7822 (2016)

    Article  Google Scholar 

  18. Modeer, T.; Pallo, N.; Foulkes, T.; Barth, C.B.; Pilawa-Podgurski, R.C.N.: Design of a GaN-based interleaved nine-level flying capacitor multilevel inverter for electric aircraft applications. IEEE Trans. Power Electron. 35(11), 12153–12165 (2020)

    Article  Google Scholar 

  19. Chamarthi, K.; Al-Durra, A.; El-Fouly, T.H.M.; Jaafari, K.A.: A novel three-phase transformerless cascaded multilevel inverter topology for grid-connected solar PV applications. IEEE Trans. Industry Appl. 57(3), 2285–2297 (2021)

    Article  Google Scholar 

  20. Lashab, A., et al.: A cascaded H-bridge with integrated boosting circuit. IEEE Trans. Power Electron. 36(1), 18–22 (2021)

    Article  Google Scholar 

  21. Siddique, M.D.; Mekhilef, S.; Shah, N.M.; Sarwar, A.; Iqbal, A.; Memon, M.A.: A new multilevel inverter topology with reduce switch count. IEEE Access 7, 58584–58594 (2019)

    Article  Google Scholar 

  22. NasiriAvanaki, H.; Barzegarkhoo, R.; Zamiri, E.; Yang, Y.; Blaabjerg, F.: Reduced switch-count structure for symmetric multilevel inverters with a novel switched-DC-source submodule. IET Power Electron. 12(2), 311–321 (2019)

    Article  Google Scholar 

  23. Hosseinzadeh, M. A.; Sarbanzadeh, M.; Sarbanzadeh, E.; Rivera, M.; Babaei, E.; Muñoz, J.: Cascaded multilevel inverter based on new submodule inverter with reduced number of switching devices. In: Proceedings IEEE Southern Power Electronics Conference (SPEC), Puerto Varas, Chile, Dec. 2017, pp. 1–6.

  24. Majumdar, S.; Mahato, B.; Jana, K.C.: Implementation of an optimum reduced components multicell multilevel inverter (MC-MLI) for lower standing voltage. IEEE Trans. Ind. Electron. 67(4), 2765–2775 (2020)

    Article  Google Scholar 

  25. Zeng, J.; Lin, W.; Cen, D.; Liu, J.: Novel K-type multilevel inverter with reduced components and self-balance. IEEE J. Emerg. Topics Power Electron. 8(4), 4343–4354 (2020)

    Article  Google Scholar 

  26. Sharifzadeh, M.; Al-Haddad, K.: Packed E-Cell (PEC) converter topology operation and experimental validation. IEEE Access 7, 93049–93061 (2019)

    Article  Google Scholar 

  27. Sleiman, M.; Blanchette, H. F.; Al-Haddad, K.; Grégoire, L.-A.; Kanaan, H.: A new 7L-PUC multi-cells modular multilevel converter for AC-AC and AC-DC applications. In: 2015 IEEE International Conference on Industrial Technology (ICIT), pp. 2514-2519 (2015)

  28. Guacci, M., et al.: Experimental characterization of silicon and gallium nitride 200 V power semiconductors for modular/multi-level converters using advanced measurement techniques. IEEE J. Emerg. Sel. Topics Power Electron. 8(3), 2238–2254 (2020)

    Article  Google Scholar 

  29. Barzegarkhoo, R.; Siwakoti, Y.; Blaabjerg, F.: A new switched- capacitor five-level inverter suitable for transformerless grid connected applications. IEEE Trans. Power Electron. 35(8), 8140–8153 (2020)

    Article  Google Scholar 

  30. Lee, S.; Lim, C.; Lee, K.: Novel active-neutral-point-clamped inverters with improved voltage boosting capability. IEEE Trans. Power Electron. 35(6), 5978–5986 (2020)

    Article  Google Scholar 

  31. Saeedian, M.; Hosseini, S.; Adabi, J.: A five-level step-up module for multilevel inverters: topology, modulation strategy, and implementation. IEEE J. Emerg. Sel. Topics Power Electron 6(4), 2215–2226 (2018)

    Article  Google Scholar 

  32. Lee, S.; Lim, C.; Siwakoti, Y.; Lee, K.: Dual-T-type five-level cascaded multilevel inverter with double voltage boosting gain. IEEE Trans. Power Electron. 35(9), 9522–9529 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Alsolami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsolami, M. High Performance Three-Phase, Three-Port, Five-Level, DC/AC Inverter Based Switched Capacitor Circuit for Renewable Energy Application. Arab J Sci Eng 47, 14881–14897 (2022). https://doi.org/10.1007/s13369-022-07077-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07077-w

Keywords

Navigation