Skip to main content
Log in

ZnFe2O4/SiO2 Nanocomposites Prepared via the Natural Surfactant Morus alba L. as an Excellent Candidate for Drug Delivery Agent

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

We have successfully synthesized ZnFe2O4/SiO2Morus alba L. nanoparticles as a drug delivery agent. The nanostructural and optical properties of ZnFe2O4/SiO2Morus alba L. were evaluated using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy–energy dispersive X-ray (SEM–EDX) spectroscopy, transmission electron microscopy (TEM), and ultraviolet–visible spectroscopy. Antibacterial and drug delivery tests were conducted to examine the antibacterial activity and drug delivery performance of the nanoparticles, respectively. The peaks in the XRD patterns indicated the existence of ZnFe2O4 and SiO2 phases at 2θ = 35.4° and 22°–28°, respectively, in the sample. Meanwhile, the FTIR spectrum showed the functional group of ZnFe2O4Morus alba L. at wavenumbers of 400–600 cm−1 and Si–O–Si at 1086 and 950 cm−1. The Si–O–Fe peak was also detected at 541–575 cm−1. The calculated bandgap energy was in the range of 3.003–3.218 eV. The TEM and SEM images revealed that the particle size varied in the range of 28.7–47.3 nm and confirmed the formation of a composite. The samples exhibited excellent antibacterial activity and inhibited the growth of S. aureus and E. coli by up to 72% and 78%, respectively. The samples also possessed a desirable doxorubicin (DOX) loading, indicated by the appearance of DOX absorption peaks at wavelengths of 200–250 nm and 450–550 nm. Herein, the increase in SiO2 composition can speed up the DOX release process. Thus, the synthesized samples in this work meet the riteria for drug delivery application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Zhang, L.; Montesdeoca, N.; Karges, J.; Xiao, H.: Immunogenic cell death inducing metal complexes for cancer therapy. Angew. Chem. Int. Ed. 62, e202300662 (2023). https://doi.org/10.1002/anie.202300662

    Article  Google Scholar 

  2. Berry, L.L.; Davis, S.W.; Godfrey Flynn, A.; Landercasper, J.; Deming, K.A.: Is it time to reconsider the term “cancer survivor”? J. Psychosoc. Oncol. 37, 413–426 (2019). https://doi.org/10.1080/07347332.2018.1522411

    Article  Google Scholar 

  3. Cai, Q.; Chen, Y.; Qi, X.; Zhang, D.; Pan, J.; Xie, Z.; Xu, C.; Li, S.; Zhang, X.; Gao, Y.; Hou, J.; Guo, X.; Zhou, X.; Zhang, B.; Ma, F.; Zhang, W.; Lin, G.; Xin, Z.; Niu, Y.; Wang, Y.: Temporal trends of kidney cancer incidence and mortality from 1990 to 2016 and projections to 2030. Transl Androl Urol 9, 166–181 (2020). https://doi.org/10.21037/tau.2020.02.23

    Article  Google Scholar 

  4. Piñeros, M.; Frech, S.; Frazier, L.; Laversanne, M.; Barnoya, J.; Garrido, C.; Gharzouzi, E.; Chacón, A.; Fuentes Alabi, S.; Ruiz de Campos, L.: Advancing reliable data for cancer control in the Central America Four region. J Glob Oncol 4, 1–11 (2017)

    Google Scholar 

  5. Sohel, M.; Sultana, H.; Sultana, T.; Al Amin, M.; Aktar, S.; Ali, M.C.; Rahim, Z.B.; Hossain, M.A.; Al Mamun, A.; Amin, M.N.: Chemotherapeutic potential of hesperetin for cancer treatment, with mechanistic insights: a comprehensive review. Heliyon 8, E08815 (2022). https://doi.org/10.1016/j.heliyon.2022.e08815

    Article  Google Scholar 

  6. Anand, U.; Dey, A.; Chandel, A.K.S.; Sanyal, R.; Mishra, A.; Pandey, D.K.; De Falco, V.; Upadhyay, A.; Kandimalla, R.; Chaudhary, A.: Cancer chemotherapy and beyond: current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 10, 1367–1401 (2023). https://doi.org/10.1016/j.gendis.2022.02.007

    Article  Google Scholar 

  7. Rawat, P.S.; Jaiswal, A.; Khurana, A.; Bhatti, J.S.; Navik, U.: Doxorubicin-induced cardiotoxicity: an update on the molecular mechanism and novel therapeutic strategies for effective management. Biomed. Pharmacother. 139, 111708 (2021). https://doi.org/10.1016/j.biopha.2021.111708

    Article  Google Scholar 

  8. Tian, Z.; Yang, Y.; Yang, Y.; Zhang, F.; Li, P.; Wang, J.; Yang, J.; Zhang, P.; Yao, W.; Wang, X.: High cumulative doxorubicin dose for advanced soft tissue sarcoma. BMC Cancer 20, 1139 (2020). https://doi.org/10.1186/s12885-020-07663-x

    Article  Google Scholar 

  9. Kwiecińska, K.; Stachowicz-Kuśnierz, A.; Jagusiak, A.; Roterman, I.; Korchowiec, J.: Impact of doxorubicin on self-organization of Congo red: quantum chemical calculations and molecular dynamics simulations. ACS Omega 5, 19377–19384 (2020). https://doi.org/10.1021/acsomega.0c01095

    Article  Google Scholar 

  10. Lei, J.; Wang, H.; Zhu, D.; Wan, Y.; Yin, L.: Combined effects of avasimibe immunotherapy, doxorubicin chemotherapy, and metal–organic frameworks nanoparticles on breast cancer. J. Cell. Physiol. 235, 4814–4823 (2020). https://doi.org/10.1002/jcp.29358

    Article  Google Scholar 

  11. Kong, X.; Qi, Y.; Wang, X.; Jiang, R.; Wang, J.; Fang, Y.; Gao, J.; Chu Hwang, K.: Nanoparticle drug delivery systems and their applications as targeted therapies for triple negative breast cancer. Prog. Mater. Sci. 134, 101070 (2023). https://doi.org/10.1016/j.pmatsci.2023.101070

    Article  Google Scholar 

  12. Hu, L.-L.; Meng, J.; Zhang, D.-D.; Chen, M.-L.; Shu, Y.; Wang, J.-H.: Functionalization of mesoporous organosilica nanocarrier for pH/glutathione dual-responsive drug delivery and imaging of cancer therapy process. Talanta 177, 203–211 (2018). https://doi.org/10.1016/j.talanta.2017.07.017

    Article  Google Scholar 

  13. Pusta, A.; Tertis, M.; Crăciunescu, I.; Turcu, R.; Mirel, S.; Cristea, C.: Recent advances in the development of drug delivery applications of magnetic nanomaterials. Pharmaceutics 15, 1872 (2023). https://doi.org/10.3390/pharmaceutics15071872

    Article  Google Scholar 

  14. Syahida, A.N.; Sutanto, H.; Alkian, I.; Irianti, F.D.D.; Wibowo, A.A.; Priyono, P.: Synthesized and characterization nanosized synthesis Fe3O4 powder from natural iron sand. J. Phys. Conf. Ser. 1943, 012013 (2021). https://doi.org/10.1088/1742-6596/1943/1/012013

    Article  Google Scholar 

  15. Srivastava, S.; Uberuaga, B.P.; Asta, M.: Density functional theory study of local environment effects on oxygen vacancy properties in magnetite. J. Phys. Chem. C 127, 17460–17472 (2023). https://doi.org/10.1021/acs.jpcc.3c02581

    Article  Google Scholar 

  16. Yuan, H.; Liu, E.; Yin, Y.; Zhang, W.; Wong, P.K.J.; Zheng, J.-G.; Huang, Z.; Ou, H.; Zhai, Y.; Xu, Q.; Du, J.; Zhai, H.: Enhancement of magnetic moment in ZnxFe3–xO4 thin films with dilute Zn substitution. Appl. Phys. Lett. 108, 232403 (2016). https://doi.org/10.1063/1.4953462

    Article  Google Scholar 

  17. Li, O.A.; Lin, C.-R.; Chen, H.-Y.; Hsu, H.-S.; Shih, K.-Y.; Edelman, I.S.; Wu, K.-W.; Tseng, Y.-T.; Ovchinnikov, S.G.; Lee, J.-S.: Size dependent magnetic and magneto-optical properties of Ni0.2Zn0.8Fe2O4 nanoparticles. J. Magn. Magn. Mater. 408, 206–212 (2016). https://doi.org/10.1016/j.jmmm.2016.02.062

    Article  Google Scholar 

  18. Nag, A.; Bose, RSc.; ManojKumar, A.; Venu, K.S.; Singh, H.: Influence of doping on magnetic and electromagnetic properties of spinel ferrites. Ceram. Int. 49, 33099–33110 (2023). https://doi.org/10.1016/j.ceramint.2023.08.011

    Article  Google Scholar 

  19. Akhtar, M.N.; Rahman, A.; Sulong, A.B.; Khan, M.A.: Structural, spectral, dielectric and magnetic properties of Ni0.5MgxZn0.5–xFe2O4 nanosized ferrites for microwave absorption and high frequency applications. Ceram. Int. 43, 4357–4365 (2017). https://doi.org/10.1016/j.ceramint.2016.12.081

    Article  Google Scholar 

  20. Sushant, S.K.; Choudhari, N.J.; Patil, S.; Rendale, M.K.; Mathad, S.N.; Pathan, A.T.: Development of M-NiFe2O4 (Co, Mg, Cu, Zn, and rare earth materials) and the recent major applications. Int. J Self-Propag. High-Temp. Synth. 32, 61–116 (2023). https://doi.org/10.3103/S1061386223020061

    Article  Google Scholar 

  21. Rostami, M.; Sobhani Nasab, A.; Fasihi-Ramandi, M.; Badiei, A.; Rahimi-Nasrabadi, M.; Ahmadi, F.: The ZnFe2O4@mZnO–N/RGO nano-composite as a carrier and an intelligent releaser drug with dual pH- and ultrasound-triggered control. New J. Chem. 45, 4280–4291 (2021). https://doi.org/10.1039/D0NJ04758A

    Article  Google Scholar 

  22. Gandomi, F.; Rostami, M.; Ahmadi, F.; Mohammad Sorouri, A.; Badiei, A.; Fasihi-Ramandi, M.; Reza Ganjali, M.; Ehrlich, H.; Rahimi-Nasrabadi, M.: ROS, pH, and magnetically responsive ZnFe2O4@l-Cysteine@NGQDs nanocarriers as charge-reversal drug delivery system for controlled and targeted cancer chemo-sonodynamic therapy. Inorg. Chem. Commun. 150, 110544 (2023). https://doi.org/10.1016/j.inoche.2023.110544

    Article  Google Scholar 

  23. Lv, Z.; Wang, Q.; Bin, Y.; Huang, L.; Zhang, R.; Zhang, P.; Matsuo, M.: Magnetic behaviors of Mg- and Zn-doped Fe3O4 nanoparticles estimated in terms of crystal domain size, dielectric response, and application of Fe3O4/carbon nanotube composites to anodes for lithium ion batteries. J. Phys. Chem. C 119, 26128–26142 (2015). https://doi.org/10.1021/acs.jpcc.5b07580

    Article  Google Scholar 

  24. Güner, S.; Esir, S.; Baykal, A.; Demir, A.; Bakis, Y.: Magneto-optical properties of Cu1−xZnxFe2O4 nanoparticles. Superlattices Microstruct. 74, 184–197 (2014). https://doi.org/10.1016/j.spmi.2014.06.021

    Article  Google Scholar 

  25. Liu, X.; Liu, J.; Zhang, S.; Nan, Z.; Shi, Q.: Structural, magnetic, and thermodynamic evolutions of Zn-Doped Fe3O4 nanoparticles synthesized using a one-step solvothermal method. J. Phys. Chem. C 120, 1328–1341 (2016). https://doi.org/10.1021/acs.jpcc.5b10618

    Article  Google Scholar 

  26. Modaresi, N.; Afzalzadeh, R.; Aslibeiki, B.; Kameli, P.; Ghotbi Varzaneh, A.; Orue, I.; Chernenko, V.A.: Magnetic properties of ZnxFe3−xO4 nanoparticles: a competition between the effects of size and Zn doping level. J. Magn. Magn. Mater. 482, 206–218 (2019). https://doi.org/10.1016/j.jmmm.2019.03.060

    Article  Google Scholar 

  27. Febrianti, N.S.; Taufiq, A.; Hidayat, A.; Mufti, N.; Subadra, S.T.U.I.: Synthesis and characterization of ZnFe2O4-PEG/RGO nanocomposites as lead heavy metal adsorbents. KEM 941, 155–163 (2023). https://doi.org/10.4028/p-d8u8p7

    Article  Google Scholar 

  28. Shen, L.; Li, B.; Qiao, Y.: Fe3O4 nanoparticles in targeted drug/gene delivery systems. Materials. 11, 324 (2018). https://doi.org/10.3390/ma11020324

    Article  Google Scholar 

  29. Tong, J.; Yang, J.; Zhang, L.; Liu, T.; Peng, C.; Ni, X.; Dong, T.; Mocilac, P.; Shi, K.; Hou, X.: Efficient removal of Se-79 from highly acidic solution using SiO2 particles functionalised with iron hydroxide. Chem. Eng. J. 446, 137387 (2022). https://doi.org/10.1016/j.cej.2022.137387

    Article  Google Scholar 

  30. Aghavandi, H.; Ghorbani-Choghamarani, A.: Preparation and application of ZnFe2O4@SiO2–SO3H, as a novel heterogeneous acidic magnetic nanocatalyst for the synthesis of tetrahydrobenzo[b]pyran and 2,3-dihydroquinazolin-4(1H)-one derivative. Res. Chem. Intermed. 49, 441–467 (2023). https://doi.org/10.1007/s11164-022-04890-8

    Article  Google Scholar 

  31. Shao, H.; Qi, J.; Lin, T.; Zhou, Y.: Preparation and Characterization of Fe3O4@SiO2@NMDP core-shell structure composite magnetic nanoparticles. Ceram. Int. 44, 2255–2260 (2018). https://doi.org/10.1016/j.ceramint.2017.10.184

    Article  Google Scholar 

  32. Satapathy, M.; Varshney, P.; Nanda, D.; Mohapatra, S.S.; Behera, A.; Kumar, A.: Fabrication of durable porous and non-porous superhydrophobic LLDPE/SiO2 nanoparticles coatings with excellent self-cleaning property. Surf. Coat. Technol. 341, 31–39 (2018). https://doi.org/10.1016/j.surfcoat.2017.07.025

    Article  Google Scholar 

  33. Fang, L.; Zhou, H.; Cheng, L.; Wang, Y.; Liu, F.; Wang, S.: The application of mesoporous silica nanoparticles as a drug delivery vehicle in oral disease treatment. Front. Cell. Infect. Microbiol. 13, 1124411 (2023). https://doi.org/10.3389/fcimb.2023.1124411

    Article  Google Scholar 

  34. AbouAitah, K.; Lojkowski, W.: Delivery of natural agents by means of mesoporous silica nanospheres as a promising anticancer strategy. Pharmaceutics 13, 143 (2021). https://doi.org/10.3390/pharmaceutics13020143

    Article  Google Scholar 

  35. Nikmah, A.; Taufiq, A.; Hidayat, A.: Synthesis and characterization of Fe3O4/SiO2 nanocomposites. IOP Conf. Ser. Earth Environ. Sci. 276, 012046 (2019). https://doi.org/10.1088/1755-1315/276/1/012046

    Article  Google Scholar 

  36. Radu, E.R.; Semenescu, A.; Voicu, S.I.: Recent advances in stimuli-responsive doxorubicin delivery systems for liver cancer therapy. Polymers 14, 5249 (2022). https://doi.org/10.3390/polym14235249

    Article  Google Scholar 

  37. Li, R.; Zhou, J.; Zhang, X.; Zhang, T.; Wang, J.; Zhang, M.; He, C.; Chen, H.: Isolation, structural characterization and cholesterol-lowering effects of a novel polysaccharide from mulberry (Morus alba L.) leaf. Ind. Crops Prod. 202, 117010 (2023). https://doi.org/10.1016/j.indcrop.2023.117010

    Article  Google Scholar 

  38. Ayaz, M.; Ullah, F.; Sadiq, A.; Nawaz, A.; Yessimbekov, Z.; Ashraf, M.: Morus alba L. In: Himalayan Fruits and Berries, vol. 26, pp. 251–270. Academic Press (2023). https://doi.org/10.1016/B978-0-323-85591-4.00020-9

    Article  Google Scholar 

  39. Wani, M.Y.; Ganie, N.A.; Wani, D.M.; Wani, A.W.; Dar, S.Q.; Khan, A.H.; Khan, A.N.; Manzar, M.S.; Dehghani, M.H.: The phenolic components extracted from mulberry fruits as bioactive compounds against cancer: a review. Phytother. Res. 37, 1136–1152 (2023). https://doi.org/10.1002/ptr.7713

    Article  Google Scholar 

  40. Dadhwal, R.; Banerjee, R.: Ethnopharmacology, pharmacotherapeutics, biomedicinal and toxicological profile of Morus alba L.: a comprehensive review. S. Afr. J. Bot. 158, 98–117 (2023). https://doi.org/10.1016/j.sajb.2023.05.006

    Article  Google Scholar 

  41. Kosińska-Cagnazzo, A.; Diering, S.; Prim, D.; Andlauer, W.: Identification of bioaccessible and uptaken phenolic compounds from strawberry fruits in in vitro digestion/Caco-2 absorption model. Food Chem. 170, 288–294 (2015). https://doi.org/10.1016/j.foodchem.2014.08.070

    Article  Google Scholar 

  42. Willenberg, I.; Michael, M.; Wonik, J.; Bartel, L.C.; Empl, M.T.; Schebb, N.H.: Investigation of the absorption of resveratrol oligomers in the Caco-2 cellular model of intestinal absorption. Food Chem. 167, 245–250 (2015). https://doi.org/10.1016/j.foodchem.2014.06.103

    Article  Google Scholar 

  43. Xiao, J.; Högger, P.: Stability of dietary polyphenols under the cell culture conditions: avoiding erroneous conclusions. J. Agric. Food Chem. 63, 1547–1557 (2015). https://doi.org/10.1021/jf505514d

    Article  Google Scholar 

  44. Cao, H.; Jia, X.; Shi, J.; Xiao, J.; Chen, X.: Non-covalent interaction between dietary stilbenoids and human serum albumin: Structure–affinity relationship, and its influence on the stability, free radical scavenging activity and cell uptake of stilbenoids. Food Chem. 202, 383–388 (2016). https://doi.org/10.1016/j.foodchem.2016.02.003

    Article  Google Scholar 

  45. Monica, A.B.; Taufiq, A.; Sunaryono, M.N.; Wisodo, H.: Extracting Morus alba L. leaves as surfactant agent to prepare SiO2/ZnFe2O4 nanocomposites. Presented at the , Malang, Indonesia (2020)

  46. Zhang, J.; Zhai, S.; Li, S.; Xiao, Z.; Song, Y.; An, Q.; Tian, G.: Pb(II) removal of Fe3O4@SiO2–NH2 core–shell nanomaterials prepared via a controllable sol–gel process. Chem. Eng. J. 215–216, 461–471 (2013). https://doi.org/10.1016/j.cej.2012.11.043

    Article  Google Scholar 

  47. Husain, S.; Yusup, M.; Haryanti, N.H.; Suryajaya, S.M.; Rodiansono, A.S.; Riyanto, A.: Characteristics of zinc ferrite nanoparticles (ZnFe2O4) from natural iron ore. IOP Conf. Ser. Earth Environ. Sci. 758, 012001 (2021). https://doi.org/10.1088/1755-1315/758/1/012001

    Article  Google Scholar 

  48. Sunaryono, T.A.; Munaji, I.B.; Triwikantoro, Z.M.; Darminto: Magneto-elasticity in hydrogels containing Fe[sub 3]O[sub 4] nanoparticles and their potential applications. Presented at the , Central of Kalimantan, Indonesia (2013)

  49. Taufiq, A.; Nikmah, A.; Hidayat, A.; Sunaryono, S.; Mufti, N.; Hidayat, N.; Susanto, H.: Synthesis of magnetite/silica nanocomposites from natural sand to create a drug delivery vehicle. Heliyon 6, e03784 (2020). https://doi.org/10.1016/j.heliyon.2020.e03784

    Article  Google Scholar 

  50. Nguyen, X.S.; Zhang, G.; Yang, X.: Mesocrystalline Zn-doped Fe3O4 hollow submicrospheres: formation mechanism and enhanced photo-fenton catalytic performance. ACS Appl. Mater. Interfaces 9, 8900–8909 (2017). https://doi.org/10.1021/acsami.6b16839

    Article  Google Scholar 

  51. Cen, H.; Nan, Z.: Monodisperse Zn-doped Fe 3 O 4 formation and photo-Fenton activity for degradation of rhodamine B in water. J. Phys. Chem. Solids 121, 1–7 (2018). https://doi.org/10.1016/j.jpcs.2018.05.013

    Article  Google Scholar 

  52. Kotsikau, D.; Pankov, V.; Petrova, E.; Natarov, V.; Filimonov, D.; Pokholok, K.: Structural, magnetic and hyperfine characterization of ZnxFe3–xO4 nanoparticles prepared by sol-gel approach via inorganic precursors. J. Phys. Chem. Solids 114, 64–70 (2018). https://doi.org/10.1016/j.jpcs.2017.11.004

    Article  Google Scholar 

  53. Munasir; Dewanto, A.S.; Yulianingsih, A.; Saadah, I.K.F.; Supardi, Z.A.I.; Mufid, A.; Taufiq, A.: Composites of Fe3O4/SiO 2 from natural material synthesized by co-precipitation method. IOP Conf. Ser. Mater. Sci. Eng. 202, 012057 (2017). https://doi.org/10.1088/1757-899X/202/1/012057

    Article  Google Scholar 

  54. Naseri, M.; Kamalianfar, A.; Naderi, E.; Hashemi, A.: The effect of Ag nanoparticles on physical and photocatalytic properties of ZnFe2O4/SiO2 nanocomposite. J. Mol. Struct. 1206, 127706 (2020). https://doi.org/10.1016/j.molstruc.2020.127706

    Article  Google Scholar 

  55. Fajaroh, F.; Susilowati, I.D.; Nur, A.N.S.: Synthesis of ZnFe2O4 Nanoparticles with PEG 6000 and their potential application for adsorbent. IOP Conf. Ser. Mater. Sci. Eng. 515, 012049 (2019). https://doi.org/10.1088/1757-899X/515/1/012049

    Article  Google Scholar 

  56. Puspitasari, P.; Rizkia, U.A.; Sukarni, S.; Permanasari, A.A.; Taufiq, A.; Putra, A.B.N.R.: Effects of various sintering conditions on the structural and magnetic properties of zinc ferrite (ZnFe2O4). Mat. Res. 24, e20200300 (2021). https://doi.org/10.1590/1980-5373-mr-2020-0300

    Article  Google Scholar 

  57. Matli, P.R.; Zhou, X.; Shiyu, D.; Huang, Q.: Fabrication, characterization, and magnetic behavior of porous ZnFe2O4 hollow microspheres. Int Nano Lett. 5, 53–59 (2015). https://doi.org/10.1007/s40089-014-0135-2

    Article  Google Scholar 

  58. Tsoncheva, T.; Mileva, A.; Paneva, D.; Kovacheva, D.; Spassova, I.; Nihtianova, D.; Markov, P.; Petrov, N.; Mitov, I.: Zinc ferrites hosted in activated carbon from waste precursors as catalysts in methanol decomposition. Microporous Mesoporous Mater. 229, 59–67 (2016). https://doi.org/10.1016/j.micromeso.2016.04.008

    Article  Google Scholar 

  59. Lingamdinne, L.P.; Choi, Y.-L.; Kim, I.-S.; Yang, J.-K.; Koduru, J.R.; Chang, Y.-Y.: Preparation and characterization of porous reduced graphene oxide based inverse spinel nickel ferrite nanocomposite for adsorption removal of radionuclides. J. Hazard. Mater. 326, 145–156 (2017). https://doi.org/10.1016/j.jhazmat.2016.12.035

    Article  Google Scholar 

  60. Sonu, S.S.; Dutta, V.; Raizada, P.; Singh, A.; Singh, P.; Ahamad, T.; Van Le, Q.; Nguyen, V.-H.: Type-II heterojunction-based magnetic ZnFe2O4@CuFe2O4@SiO2 photocatalyst for photodegradation of toxic dyes from wastewater. Appl. Nanosci. 13, 3693–3707 (2023). https://doi.org/10.1007/s13204-022-02500-y

    Article  Google Scholar 

  61. Rekik, N.; Issaoui, N.; Ghalla, H.; Oujia, B.; Wójcik, M.J.: IR spectral density of H-bonds. Both intrinsic anharmonicity of the fast mode and the H-bond bridge. Part I: anharmonic coupling parameter and temperature effects. J. Mol. Struct. Theochem. 821, 9–21 (2007). https://doi.org/10.1016/j.theochem.2007.06.016

    Article  Google Scholar 

  62. Rekik, N.; Issaoui, N.; Oujia, B.; Wójcik, M.J.: Theoretical IR spectral density of H-bond in liquid phase: combined effects of anharmonicities, Fermi resonances, direct and indirect relaxations. J. Mol. Liq. 141, 104–109 (2008). https://doi.org/10.1016/j.molliq.2007.10.009

    Article  Google Scholar 

  63. Das, D.; Ghosh, R.; Mandal, P.: Biogenic synthesis of silver nanoparticles using S1 genotype of Morus alba leaf extract: characterization, antimicrobial and antioxidant potential assessment. SN Appl. Sci. 1, 498 (2019). https://doi.org/10.1007/s42452-019-0527-z

    Article  Google Scholar 

  64. Cai, W.; Guo, M.; Weng, X.; Zhang, W.; Chen, Z.: Adsorption of doxorubicin hydrochloride on glutaric anhydride functionalized Fe3O4@SiO2 magnetic nanoparticles. Mater. Sci. Eng. C 98, 65–73 (2019). https://doi.org/10.1016/j.msec.2018.12.145

    Article  Google Scholar 

  65. Ahangaran, F.; Hassanzadeh, A.; Nouri, S.: Surface modification of Fe3O4@SiO2 microsphere by silane coupling agent. Int. Nano Lett. 3, 23 (2013). https://doi.org/10.1186/2228-5326-3-23

    Article  Google Scholar 

  66. Meng, X.; Zhuang, Y.; Tang, H.; Lu, C.: Hierarchical structured ZnFe2O4@SiO2@TiO2 composite for enhanced visible-light photocatalytic activity. J. Alloys Compd. 761, 15–23 (2018). https://doi.org/10.1016/j.jallcom.2018.05.150

    Article  Google Scholar 

  67. Ge, Y.; Li, C.; Waterhouse, G.I.N.; Zhang, Z.; Yu, L.: ZnFe2O4@SiO2@Polypyrrole nanocomposites with efficient electromagnetic wave absorption properties in the K and Ka band regions. Ceram. Int. 47, 1728–1739 (2021). https://doi.org/10.1016/j.ceramint.2020.08.290

    Article  Google Scholar 

  68. Zhang, Y.; Shi, Q.; Schliesser, J.; Woodfield, B.F.; Nan, Z.: Magnetic and thermodynamic properties of nanosized Zn ferrite with normal spinal structure synthesized using a facile method. Inorg. Chem. 53, 10463–10470 (2014). https://doi.org/10.1021/ic501487c

    Article  Google Scholar 

  69. Buchmann, M.; Schach, E.; Tolosana-Delgado, R.; Leißner, T.; Astoveza, J.; Kern, M.; Möckel, R.; Ebert, D.; Rudolph, M.; van den Boogaart, K.; Peuker, U.: Evaluation of magnetic separation efficiency on a cassiterite-bearing skarn ore by means of integrative SEM-based image and XRF–XRD data analysis. Minerals 8, 390 (2018). https://doi.org/10.3390/min8090390

    Article  Google Scholar 

  70. Munasir; Triwikantoro; Zainuri, M.; Darminto: Synthesis of SiO2 nanopowders containing quartz and cristobalite phases from silica sands. Mater. Sci. Poland 33, 47–55 (2015). https://doi.org/10.1515/msp-2015-0008

    Article  Google Scholar 

  71. Shakib, P.; Dekamin, M.G.; Valiey, E.; Karami, S.; Dohendou, M.: Ultrasound-promoted preparation and application of novel bifunctional core/shell Fe3O4@SiO2@PTS-APG as a robust catalyst in the expeditious synthesis of Hantzsch esters. Sci. Rep. 13, 8016 (2023). https://doi.org/10.1038/s41598-023-33990-7

    Article  Google Scholar 

  72. Chen, Y.; Jin, X.: Preparation of Fe3O4@SiO2@BiO1.8·004H2O/Ag3PO4 magnetic nanocomposite and its photocatalytic performance. Ceram. Int. 45, 1283–1292 (2019). https://doi.org/10.1016/j.ceramint.2018.10.012

    Article  Google Scholar 

  73. Zarei, S.; Niad, M.; Raanaei, H.: The removal of mercury ion pollution by using Fe3O4-nanocellulose: synthesis, characterizations and DFT studies. J. Hazard. Mater. 344, 258–273 (2018). https://doi.org/10.1016/j.jhazmat.2017.10.009

    Article  Google Scholar 

  74. Mandal, S.; Natarajan, S.: Adsorption and catalytic degradation of organic dyes in water using ZnO/ZnxFe3–xO4 mixed oxides. J. Environ. Chem. Eng. 3, 1185–1193 (2015). https://doi.org/10.1016/j.jece.2015.04.021

    Article  Google Scholar 

  75. Petrova, E.; Kotsikau, D.; Pankov, V.: Structural characterization and magnetic properties of sol–gel derived ZnxFe3–xO4 nanoparticles. J. Magn. Magn. Mater. 378, 429–435 (2015). https://doi.org/10.1016/j.jmmm.2014.11.076

    Article  Google Scholar 

  76. Behdadfar, B.; Kermanpur, A.; Sadeghi-Aliabadi, H.; Morales, M.; del Puerto Morales, M.; Mozaffari, M.: Synthesis of aqueous ferrofluids of ZnxFe3−xO4 nanoparticles by citric acid assisted hydrothermal-reduction route for magnetic hyperthermia applications. J. Magn. Magn. Mater. 324, 2211–2217 (2012). https://doi.org/10.1016/j.jmmm.2012.02.034

    Article  Google Scholar 

  77. Prithivirajan, R.; Balasundar, P.; Shyamkumar, R.; Al-Harbi, N.S.; Kadaikunnan, S.; Ramkumar, T.; Narayanasamy, P.: Characterization of cellulosic fibers from Morus alba L. stem. J. Nat. Fibers 16, 503–511 (2019). https://doi.org/10.1080/15440478.2018.1426079

    Article  Google Scholar 

  78. Munasir; Dewanto, A.S.; Yulianingsih, A.; Saadah, I.K.F.; Supardi, Z.A.I.; Mufid, A.; Taufiq, A.: Composites of Fe3O4/SiO2 from natural material synthesized by Co-precipitation method. IOP Conf. Ser. Mater. Sci. Eng. 202, 012057 (2017). https://doi.org/10.1088/1757-899X/202/1/012057

    Article  Google Scholar 

  79. Etemadinia, T.; Barikbin, B.; Allahresani, A.: Removal of congo red dye from aqueous solutions using ZnFe2o4/Sio2/Tragacanth gum magnetic nanocomposite as a novel adsorbent. Surf Interfaces 14, 117–126 (2019). https://doi.org/10.1016/j.surfin.2018.10.010

    Article  Google Scholar 

  80. Zulfakar, M.S.; Abdullah, H.; Wan Jalal, W.N.; Zainuddin, Z.; Shaari, S.: Influence different compositions of (1–x)ZnFe2O4xSiO2 nanostructures thin film synthesized by sol-gel method. MSF. 846, 607–613 (2016). https://doi.org/10.4028/www.scientific.net/MSF.846.607

    Article  Google Scholar 

  81. Klein, J.; Kampermann, L.; Mockenhaupt, B.; Behrens, M.; Strunk, J.; Bacher, G.: Limitations of the Tauc plot method. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202304523

    Article  Google Scholar 

  82. Johannes, A.Z.; Pingak, R.K.; Bukit, M.: Tauc plot software: calculating energy gap values of organic materials based on ultraviolet-visible absorbance spectrum. IOP Conf. Ser. Mater. Sci. Eng. 823, 012030 (2020). https://doi.org/10.1088/1757-899X/823/1/012030

    Article  Google Scholar 

  83. Veisi, H.; Ozturk, T.; Karmakar, B.; Tamoradi, T.; Hemmati, S.: In situ decorated Pd NPs on chitosan-encapsulated Fe3O4/SiO2-NH2 as magnetic catalyst in Suzuki-Miyaura coupling and 4-nitrophenol reduction. Carbohydr. Polym. 235, 115966 (2020). https://doi.org/10.1016/j.carbpol.2020.115966

    Article  Google Scholar 

  84. ErsanghonoKusumo, E.Q.M.: Isolasi dan Identifikasi Senyawa Flavonoid dari Daun Murbei (Morus alba Linn)

  85. Tripathy, S.K.; Pattanaik, A.: Optical and electronic properties of some semiconductors from energy gaps. Opt. Mater. 53, 123–133 (2016). https://doi.org/10.1016/j.optmat.2016.01.012

    Article  Google Scholar 

  86. Khalid, A.; Ahmed, R.M.; Taha, M.; Soliman, T.S.: Fe3O4 nanoparticles and Fe3O4@SiO2 core-shell: synthesize, structural, morphological, linear, and nonlinear optical properties. J. Alloys Compd. 947, 169639 (2023). https://doi.org/10.1016/j.jallcom.2023.169639

    Article  Google Scholar 

  87. Rudrappa, M.; Rudayni, H.A.; Assiri, R.A.; Bepari, A.; Basavarajappa, D.S.; Nagaraja, S.K.; Chakraborty, B.; Swamy, P.S.; Agadi, S.N.; Niazi, S.K.; Nayaka, S.: Plumeria alba-mediated green synthesis of silver nanoparticles exhibits antimicrobial effect and anti-oncogenic activity against glioblastoma U118 MG cancer cell line. Nanomaterials 12, 493 (2022). https://doi.org/10.3390/nano12030493

    Article  Google Scholar 

  88. Prabhu, Y.T.; Rao, K.V.; Kumari, B.S.; Kumar, V.S.S.; Pavani, T.: Synthesis of Fe3O4 nanoparticles and its antibacterial application. Int Nano Lett. 5, 85–92 (2015). https://doi.org/10.1007/s40089-015-0141-z

    Article  Google Scholar 

  89. Sheikh, L.; Vohra, R.; Verma, A.K.; Nayar, S.: Biomimetically synthesized aqueous ferrofluids having antibacterial and anticancer properties. MSA 06, 242–250 (2015). https://doi.org/10.4236/msa.2015.63029

    Article  Google Scholar 

  90. Salehi, S.; Mirzaie, A.; Sadat Shandiz, S.A.; Noorbazargan, H.; Rahimi, A.; Yarmohammadi, S.; Ashrafi, F.: Chemical composition, antioxidant, antibacterial and cytotoxic effects of Artemisia marschalliana Sprengel extract. Nat. Prod. Res. 31, 469–472 (2017). https://doi.org/10.1080/14786419.2016.1174234

    Article  Google Scholar 

  91. Saputra, K.; Sunaryono, S.; Difa, N.V.; Hidayat, S.; Taufiq, A.: The effect of Zn doping on thermal properties and antimicrobial of ZnxFe2-xO3 nanoparticles. Presented at the , Malang, Indonesia (2020)

  92. El-Gamel, N.E.A.; Wortmann, L.; Arroub, K.; Mathur, S.: SiO2@Fe2O3 core–shell nanoparticles for covalent immobilization and release of sparfloxacin drug. Chem. Commun. 47, 10076 (2011). https://doi.org/10.1039/c1cc13708e

    Article  Google Scholar 

  93. Raghunath, A.; Perumal, E.: Metal oxide nanoparticles as antimicrobial agents: a promise for the future. Int. J. Antimicrob. Agents 49, 137–152 (2017). https://doi.org/10.1016/j.ijantimicag.2016.11.011

    Article  Google Scholar 

  94. Taufiq, A.; Saputro, R.E.; Susanto, H.; Hidayat, N.; Sunaryono, S.; Amrillah, T.; Wijaya, H.W.; Mufti, N.; Simanjuntak, F.M.: Synthesis of Fe3O4/Ag nanohybrid ferrofluids and their applications as antimicrobial and antifibrotic agents. Heliyon 6, e05813 (2020). https://doi.org/10.1016/j.heliyon.2020.e05813

    Article  Google Scholar 

  95. Weng, X.; Cai, W.; Lin, S.; Chen, Z.: Degradation mechanism of amoxicillin using clay supported nanoscale zero-valent iron. Appl. Clay Sci. 147, 137–142 (2017). https://doi.org/10.1016/j.clay.2017.07.023

    Article  Google Scholar 

  96. Beg, M.S.; Mohapatra, J.; Pradhan, L.; Patkar, D.; Bahadur, D.: Porous Fe3O4–SiO2 core-shell nanorods as high-performance MRI contrast agent and drug delivery vehicle. J. Magn. Magn. Mater. 428, 340–347 (2017). https://doi.org/10.1016/j.jmmm.2016.12.079

    Article  Google Scholar 

  97. Heidari, Z.; Salehzadeh, A.; Sadat Shandiz, S.A.; Tajdoost, S.: Anti-cancer and anti-oxidant properties of ethanolic leaf extract of Thymus vulgaris and its bio-functionalized silver nanoparticles. 3 Biotech. 8, 177 (2018). https://doi.org/10.1007/s13205-018-1199-x

    Article  Google Scholar 

  98. Sagaama, A.; Issaoui, N.; Al-Dossary, O.; Kazachenko, A.S.; Wojcik; Marek, J.: Non covalent interactions and molecular docking studies on morphine compound. J. King Saud Univ. Sci. 33, 101606 (2021). https://doi.org/10.1016/j.jksus.2021.101606

    Article  Google Scholar 

  99. Issaoui, N.; Ghalla, H.; Bardak, F.; Karabacak, M.; Aouled Dlala, N.; Flakus, H.T.; Oujia, B.: Combined experimental and theoretical studies on the molecular structures, spectroscopy, and inhibitor activity of 3-(2-thienyl)acrylic acid through AIM, NBO, FT-IR, FT-Raman, UV and HOMO-LUMO analyses, and molecular docking. J. Mol. Struct. 1130, 659–668 (2017). https://doi.org/10.1016/j.molstruc.2016.11.019

    Article  Google Scholar 

  100. Sagaama, A.; Noureddine, O.; Brandán, S.A.; Jędryka, A.J.; Flakus, H.T.; Ghalla, H.; Issaoui, N.: Molecular docking studies, structural and spectroscopic properties of monomeric and dimeric species of benzofuran-carboxylic acids derivatives: DFT calculations and biological activities. Comput. Biol. Chem. 87, 107311 (2020). https://doi.org/10.1016/j.compbiolchem.2020.107311

    Article  Google Scholar 

  101. Sagaama, A.; Issaoui, N.: Design, molecular docking analysis of an anti-inflammatory drug, computational analysis and intermolecular interactions energy studies of 1-benzothiophene-2-carboxylic acid. Comput. Biol. Chem. 88, 107348 (2020). https://doi.org/10.1016/j.compbiolchem.2020.107348

    Article  Google Scholar 

  102. Deepika, D.; PonnanEttiyappan, J.: Synthesis and characterization of microporous hollow core-shell silica nanoparticles (HCSNs) of tunable thickness for controlled release of doxorubicin. J. Nanopart. Res. 20, 187 (2018). https://doi.org/10.1007/s11051-018-4287-2

    Article  Google Scholar 

  103. Jiang, W.; Wu, J.; Shen, Y.; Tian, R.; Zhou, S.; Jiang, W.: Synthesis and characterization of doxorubicin loaded pH-sensitive magnetic core-shell nanocomposites for targeted drug delivery applications. NANO 11, 1650127 (2016). https://doi.org/10.1142/S1793292016501277

    Article  Google Scholar 

  104. Zhang, C.-W.; Zeng, C.-C.; Xu, Y.: Preparation and characterization of surface-functionalization of silica-coated magnetite nanoparticles for drug delivery. NANO 09, 1450042 (2014). https://doi.org/10.1142/S1793292014500428

    Article  Google Scholar 

Download references

Funding

This work was partially supported by Universitas Negeri Malang (PTM Research Scheme) with contract number 5.3.429/UN32.14.1/LT/2021 for AT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Taufiq.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monica, A.B., Subadra, S.T.U.I., Amrillah, T. et al. ZnFe2O4/SiO2 Nanocomposites Prepared via the Natural Surfactant Morus alba L. as an Excellent Candidate for Drug Delivery Agent. Arab J Sci Eng 49, 733–752 (2024). https://doi.org/10.1007/s13369-023-08489-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08489-y

Keywords

Navigation