Skip to main content
Log in

An Investigation of the Growth of Fatigue Cracks in Single Crystal Superelastic NiTi Under High Strain Level Using Molecular Dynamics Simulations

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In realistic applications, shape memory alloys are mostly under cyclic loading and, thus, fatigue failure is the major mode of failure in these components. Fatigue mainly starts from a nano- or micro-defect studying which is not feasible using experiments. Thus, Molecular Dynamics (MD) simulations are useful for obtaining understanding of the underlying mechanisms leading to failure of the part. In this study, MD simulations were performed on single crystal NiTi models containing a middle crack subjected to cyclic tensile loading in different crystallographic orientations (i.e., [100], [110] and [111]) at two austenitic temperatures. The orientation dependence of the fatigue behavior of NiTi was observed to be significant. The crack did not propagate significantly under [100] and [110] loading due to the stress-induced martensitic phase transformation at the crack tip. The formation of the martensite at the crack tip acted as a barrier to crack propagation. On the other hand, the crack grew significantly in the model loaded along [111] crystallographic orientation. The crack growth was accelerated when the crack met the {110}<111> slip system which is favorable for austenite with B2 crystal structure. In addition, the effect of temperature on the fatigue crack growth of NiTi was studied at 500 K and 550 K, both being above the austenite finish temperature. The results indicated a slower crack growth rate in NiTi at a higher temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Duerig, T.; Pelton, A.; Stöckel, D.: An overview of nitinol medical applications. Mater. Sci. Eng. A 273, 149–160 (1999)

    Article  Google Scholar 

  2. Lagoudas, D.C.: Shape Memory Alloys: Modeling and Engineering Applications. Springer, London (2008)

    MATH  Google Scholar 

  3. Ataollahi, S.; Mahtabi, M.J.: An interatomic potential for ternary NiTiHf shape memory alloys based on modified embedded atom method. Comput. Mater. Sci. 227, 112278 (2023). https://doi.org/10.1016/j.commatsci.2023.112278

    Article  Google Scholar 

  4. Ataollahi, S.; Mahtabi, M.J.: A molecular dynamics study on the effect of precipitate on the phase transformation in NiTi. In: ReSEARCH Dialogues Conference Proceedings. (2021). https://scholar.utc.edu/research-dialogues/2021/posters/2.

  5. Mahtabi, M.J.; Shamsaei, N.; Mitchell, M.R.; Fatigue of Nitinol: The state-of-the-art and ongoing challenges. J. Mech. Beh. Bio. Mat. 50, 228-254 (2015).  https://doi.org/10.1016/j.jmbbm.2015.06.010

    Article  Google Scholar 

  6. Lado, L.; Ataollahi, S.; Yadollah, A.; Mahtabi, M.J.: Process-specific microstructure-sensitive modeling of fatigue in additively manufactured Ti-6Al-4V alloys. Solid Freeform Fabric. Symp. (SFF) 33, 801–810 (2022). https://doi.org/10.26153/tsw/44052

    Article  Google Scholar 

  7. Mahtabi, M.; Yadollahi, A.; Stokes, R.; Morgan-Barnes, C.; Young, J.; Doude, H.; Bian, L.: Effect of powder reuse on microstructural and fatigue properties of Ti-6Al-4V fabricated via directed energy deposition. In 2022 International Solid Freeform Fabrication Symposium. (2022)

  8. Mahtabi, M.; Yadollahi, A.; Ataollahi, S.; Mahtabi, M.J.: Effect of build height on structural integrity of Ti-6Al-4V fabricated via laser powder bed fusion. Eng. Fail. Anal. 154, 107691 (2023). https://doi.org/10.1016/j.engfailanal.2023.107691

    Article  Google Scholar 

  9. Nishimura, K.; Miyazaki, N.: Molecular dynamics simulation of crack growth under cyclic loading. Comput. Mater. Sci. 31(3–4), 269–278 (2004)

    Article  Google Scholar 

  10. Potirniche, G.; Horstemeyer, M.; Jelinek, B.; Wagner, G.: Fatigue damage in nickel and copper single crystals at nanoscale. Int. J. Fatigue 27(10–12), 1179–1185 (2005)

    Article  Google Scholar 

  11. Potirniche, G.; Horstemeyer, M.; Gullett, P.; Jelinek, B.: Atomistic modelling of fatigue crack growth and dislocation structuring in FCC crystals. Proc. Royal Soc. Math. Phys. Eng. Sci. 462(2076), 3707–3731 (2006)

    MATH  Google Scholar 

  12. Tang, T.; Kim, S.; Horstemeyer, M.: Fatigue crack growth in magnesium single crystals under cyclic loading: molecular dynamics simulation. Comput. Mater. Sci. 48(2), 426–439 (2010)

    Article  Google Scholar 

  13. Ma, L.; Xiao, S.; Deng, H.; Hu, W.: Molecular dynamics simulation of fatigue crack propagation in bcc iron under cyclic loading. Int. J. Fatigue 68, 253–259 (2014)

    Article  Google Scholar 

  14. Ding, J.; Wang, L.-S.; Song, K.; Liu, B.; Huang, X.: Molecular dynamics simulation of crack propagation in single-crystal aluminum plate with central cracks. J. Nanomater. 1, 17 (2017)

    Google Scholar 

  15. Chang, W.-J.; Fang, T.-H.: Influence of temperature on tensile and fatigue behavior of nanoscale copper using molecular dynamics simulation. J. Phys. Chem. Solids 64(8), 1279–1283 (2003)

    Article  Google Scholar 

  16. You, Y.; Zhang, Y.; Moumni, Z.; Anlas, G.; Zhang, W.: Effect of the thermomechanical coupling on fatigue crack propagation in NiTi shape memory alloys. Mater. Sci. Eng. A 685, 50–56 (2017)

    Article  Google Scholar 

  17. Mahtabi, M.; Shamsaei, N.: Multiaxial fatigue modeling for nitinol shape memory alloys under in-phase loading. J. Mech. Behav. Biomed. Mater. 55, 236–249 (2016)

    Article  Google Scholar 

  18. Zhao, T.; Kang, G.: Experimental study and life prediction on fatigue failure of NiTi shape memory alloy under multi-axial one-way shape memory cyclic loadings. Int. J. Fatigue 155, 106609 (2022)

    Article  Google Scholar 

  19. Mahtabi, M.J.; Shamsaei, N.: Fatigue modeling for superelastic NiTi considering cyclic deformation and load ratio effects. Shape Memory Superel. 3(3), 250–263 (2017). https://doi.org/10.1007/s40830-017-0115-2

    Article  Google Scholar 

  20. Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; Int Veld, P.J.; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D.; Shan, R.; Stevens, M.J.; Tranchida, J.; Trott, C.; Plimpton, S.J.: Lammps - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022). https://doi.org/10.1016/j.cpc.2021.108171

    Article  MATH  Google Scholar 

  21. Stukowski, A.: Visualization and analysis of atomistic simulation data with ovito–the open visualization tool. Modell. Simul. Mater. Sci. Eng. 18(1), 015012 (2009). https://doi.org/10.1088/0965-0393/18/1/015012

    Article  MathSciNet  Google Scholar 

  22. Hirel, P.: Atomsk: a tool for manipulating and converting atomic data files. Comput. Phys. Commun. 197, 212–219 (2015). https://doi.org/10.1016/j.cpc.2015.07.012

    Article  Google Scholar 

  23. Ko, W.-S.; Grabowski, B.; Neugebauer, J.: Development and application of a Ni-Ti interatomic potential with high predictive accuracy of the martensitic phase transition. Phys. Rev. B 92(13), 134107 (2015). https://doi.org/10.1103/PhysRevB.92.134107

    Article  Google Scholar 

  24. Ataollahi, S.; Mahtabi, M.J.: Effects of precipitate on the phase transformation of single-crystal NiTi alloy under thermal and mechanical loads: a molecular dynamics study. Mater. Today Commun. 29, 102859 (2021). https://doi.org/10.1016/j.mtcomm.2021.102859

    Article  Google Scholar 

  25. Chandra, S.; Kumar, N.N.; Samal, M.K.; Chavan, V.M.; Patel, R.J.: Molecular dynamics simulations of crack growth behavior in Al in the presence of vacancies. Comput. Mater. Sci. 117, 518–526 (2016). https://doi.org/10.1016/j.commatsci.2016.02.032

    Article  Google Scholar 

  26. Lu, M.; Wang, F.; Zeng, X.; Chen, W.; Zhang, J.: Cohesive zone modeling for crack propagation in polycrystalline NiTi alloys using molecular dynamics. Theoret. Appl. Fract. Mech. 105, 102402 (2020). https://doi.org/10.1016/j.tafmec.2019.102402

    Article  Google Scholar 

  27. Xie, G.; Wang, F.; Song, B.; Cheng, J.; Wang, J.; Zeng, X.: Grain size dependence of cracking performance in polycrystalline NiTi alloys. J. Alloy. Compd. 884, 161132 (2021). https://doi.org/10.1016/j.jallcom.2021.161132

    Article  Google Scholar 

  28. Wang, Z.; Xu, Y.; Gan, Y.; Han, X.; Liu, W.; Xin, H.: Micromechanism of partially hydrolyzed polyacrylamide molecule agglomeration morphology and its impact on the stability of crude oil−water interfacial film. J. Petrol. Sci. Eng. 214, 110492 (2022). https://doi.org/10.1016/j.petrol.2022.110492

    Article  Google Scholar 

  29. Larsen, P.M.; Schmidt, S.; Schiøtz, J.: Robust structural identification via polyhedral template matching. Modell. Simul. Mater. Sci. Eng. 24(5), 055007 (2016)

    Article  Google Scholar 

  30. Sgambitterra, E.; Magaro, P.; Niccoli, F.; Furgiuele, F.; Maletta, C.: Fatigue crack growth in austenitic and martensitic NiTi: Modeling and experiments. Shape Memory Superel. 7(2), 250–261 (2021). https://doi.org/10.1007/s40830-021-00327-0

    Article  Google Scholar 

  31. Wang, X.; Liu, C.; Sun, B.; Ponge, D.; Jiang, C.; Raabe, D.: The dual role of martensitic transformation in fatigue crack growth. Proc. Natl. Acad. Sci. 119(9), e2110139119 (2022)

    Article  Google Scholar 

  32. Okamoto, P.; Heuer, J.; Lam, N.; Ohnuki, S.; Matsukawa, Y.; Tozawa, K.; Stubbins, J.: Stress-induced amorphization at moving crack tips in NiTi. Appl. Phys. Lett. 73(4), 473–475 (1998)

    Article  Google Scholar 

  33. Tozawa, K.; Haishi, Y.; Matsukawa, Y.; Watanabe, S.; Ohnuki, S.; Takahashi, H.: Nano-crystalline formation during stress-induced amorphization at crack tips in TiNi. Microscopy 48(5), 613–616 (1999)

    Google Scholar 

  34. Sgambitterra, E.; Maletta, C.; Magarò, P.; Renzo, D.; Furgiuele, F.; Sehitoglu, H.: Effects of temperature on fatigue crack propagation in pseudoelastic NiTi shape memory alloys. Shape Memory Superelast. 5(3), 278–291 (2019). https://doi.org/10.1007/s40830-019-00231-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad J. Mahtabi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ataollahi, S., Mahtabi, M.J. An Investigation of the Growth of Fatigue Cracks in Single Crystal Superelastic NiTi Under High Strain Level Using Molecular Dynamics Simulations. Arab J Sci Eng (2023). https://doi.org/10.1007/s13369-023-08460-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-023-08460-x

Keywords

Mathematics Subject Classification

Navigation